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Powerful editing systems for developing complex software documents are difficult to engineer.
Besides requiring efficient incremental algorithms and complex data structures, such editors
must accommodate flexible editing styles, provide a consistent, coherent, and powerful user

interface, support individual variations and projectwide configurations, maintain a sharable

database of information concerning the documents being edited, and integrate smoothly with the

other tools in the environment. Pan is a language-based editing and browsing system that

exhibits these characteristics. This paper surveys the design and engineering of Pan, paying
particular attention to a number of issues that pervade the system: incremental checking and
analysis, information retention in the presence of change, tolerance for errors and anomalies,
and extension facilities.
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1. INTRODUCTION

Languages and documents play a significant role in software development. In

addition to the natural language used for written human communication,

developers use a variety of more formal languages to describe both software
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products and the processes by which they are developed and maintained.

Some examples are design languages, specification languages, structured-

documentation languages, programming languages, and numerous small

languages for scripts, schemata, and mail messages, Furthermore, programs

often contain embedded “little languages” that impose their own conven-

tions. For example, many subroutine libraries define minilanguages for long

and complex argument sequences. 1

The Panz editing and browsing system originated from an investigation

into ways to exploit language-based technology to provide more integrated

support for software developers and for the documents with which they work.

The design of Pan rests on the premise that the bridge between developers

and their software will be intelligent editing interfaces, namely, interfaces

that provide a generalization of the services of a traditional interactive ed-

itor to support interactive browsing, manipulation, and modification of

documents.

The current implementation of Pan [9, 21] is a fully functional prototype. It

supports ongoing research in language description, language-based analysis

techniques, user-interface design, advanced program-viewing methods, and

related areas. The functional characteristics of this prototype were chosen

for maximum leverage as a usable tool and as a platform for continuing

research.

—Pan is a multiwindow, multiple-font, mouse-based editing system that is

fully customizable and extensible in the spirit of Emacs [57].

—Pan incrementally builds and maintains a collection of information about

documents that can be shared with other tools.

–Pan users can freely mix text- and language-oriented manipulations in the

same visual editing field; text editing is completely unrestricted.

—A single Pan session may involve multiple languages.

—New languages can be added to Pan by writing language descriptions.

Extension mechanisms for other language services are also provided.

New language description techniques were developed for Pan. Grammati-

cal abstraction establishes formal correspondence between the concrete (pars-

ing) syntax and the abstract syntax for each language [8, 12]. Logical

constraint gram mars are an adaptation of logic programming and consistency

maintenance for the specification and enforcement of contextual constraints

[6, 71. Information gathered during constraint enforcement is retained in
a memory-resident logic database (available to other tools) and revised
incrementally as documents change.

Related issues, including support for novice programmers and learning

environments, support for program execution, graphical display and editing,

and the design and implementation of a persistent database were deferred.

1 Libraries for window systems often have these kinds of interfaces,
2 Why “Pan”? In the Greek pantheon, Pan is the god of trees and forests Also, the prefix “pan-”
connotes ‘ ‘applylng to all, ‘‘ in this instance referring to the multilingual text- and structure-ori-
ented approach adopted for this system Finally, since an editor 1s one of the most frequently
used tools in a programmer’s toolbox, the alluslon to the lowly, ubiquitous kitchen utensil is apt.
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This paper reviews the goals and early design decisions for Pan and

surveys the implementation of the Pan prototype. The discussion emphasizes

the interactions of the technologies and components, and, in particular, how

seemingly simple design strategies pervade the system. Detailed discus-

sions of Pan’s components and underlying technology have been presented

elsewhere [7, 8, 66].

Throughout the paper the term language-based indicates that one or more

of the facilities provided by the system make use of language-specific infor-

mation derived from the documents known to the system. In the context of

this paper, the term system (or editing /browsing system) encompasses the

entire collection of services that are used to browse, manipulate, and modify

one or more documents interactively.

2. LANGUAGE-BASED ENVIRONMENTS

The Pan project was motivated by a vision of language-based browsing and

editing systems as the primary interface between people and integrated

environments containing the documents they manage. Positioned this way,

between users, tools, and documents (Figure 1), such a system is uniquely

situated to gather and present information about documents for the benefit of

its users,

2.1 The Needs of Developers

The developers who read and write software-related documents are experi-

enced professionals. They are proficient with their primary tools and lan-

guages and are usually skilled at authoring documents in those languages.

Like all users, they may need extra support when confronted with unfamiliar

languages or documents.

As Winograd [68] and Goldberg [25] argue, software systems have become

so large and complex that developers spend far more time reading, under-

standing, modifying, and adapting documents than they do creating them in

the first place. These activities involve a variety of subtasks, in particular,

the acquisition and exploitation of many kinds of information [29, 41]. A

successful interactive development environment must recognize, gather, and

present complex information about documents suitable for the particular task

at hand. In order to provide such services, the system must maintain a model

of the syntactic, static semantic, and contextual properties of the document.
At the same time, there must be minimal disruption of services in midtask,

when documents may be incomplete and inconsistent.

An editing interface must not compromise flexibility and power, even for

safety or learnability. For example, many language-based editors restrict

how and when users may manipulate documents as text, in order to maintain

syntactic correctness. But both contrary arguments [67, 691 and experience

suggest that experienced developers generally will not tolerate restrictions

on a natural and convenient mode of text-based interaction. Likewise, a

system must not “do too much” [46] in the form of gratuitous intrusive

services.
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Fig. 1 Editing interface and system services in relation to the environment.

Finally, the way developers work changes over time; projects and conven-

tions (community-wide, personal, and project-specific) come and go. Even

languages themselves change. Old languages are revised and extended; new

languages are adopted and sometimes invented for specific needs. Develop-

ment environments and their services must evolve or be abandoned.

2.2 The Nature of Software Documents

The documents managed by software developers constitute richly connected,

overlapping webs of information having many structural, as well as textual,

aspects. Some structure is syntactic, for example, paragraphs in reference

manuals, data definitions in design documents, and statements in program-

ming languages. Other structure stems from the content of the documents.

Some document structure can be derived automatically from knowledge of

underlying formal languages, for example, the connection between a figure

and references to it in a book, the relationships between declarations, defini-

tions, and uses of variables in a computer program, the call graph of a

program, and the relationships among grammatical units defined by a formal

syntax. In other cases, important structure is independent of language, for

instance, hyperlinks in a hypertext system and the user-imposed hierarchy

supported by outline processors. Such structure cannot be inferred and must

be retained when provided by developers. The editors ED3 [601 and Tioga [631

and the noninteractive WEB [381 are examples of systems that support

user-supplied structure.

Some documents are encoded in more than one language, in which case

important relationships may cross language boundaries. The Mentor pro-

gramming environment [201 supports such nesting of languages.

Although formal syntax is often presumed to be the most useful structure

for the purpose of document display and user interaction, other kinds of

structure are at least as important. For example, language-based formatting
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(prettyprinting), which is intended to aid user understanding of a document,

traditionally is based only on surface syntax. Formatting is considerably

more helpful if it is sensitive to scopes, types, and clef-use relationships, as

well as to local conventions and even to distinctions such as “mainline”

versus “error-handling” code. Different users and different user tasks require

different uses of structure and different forms of access to the information

within documents. Although the information must be broad in subject do-

main, it need not be deep (in the sense that program plans [42, 56] and

clichis [54] are deep) to be useful.

2.3 The Benefits of Integration

Complex, expensive analyses in such a system are economical only when

many tools share the resulting information. The computation that verifies a

document’s type correctness can also provide information useful to a com-

piler, a global interface checker, or an auditing tool. Conversely, information

produced by other tools should also be made visible through an editing

interface. For example, helpful views of programs might exploit measure-

ment results and version history. In addition, as the formatting example

suggests, system services are enriched if user-supplied information is

preserved and used widely.

3. DESIGN OF THE F% SYSTEM

In this section we summarize the major design strategies for Pan, the system

organization, the text editing interface, and those extension and customiza-

tion facilities other than language description. Language-based technology,

mechanisms, and services are described in Sections 4–6.

3.1 Design Strategies

Our vision of the role to be played by Pan led to the adoption of a small

number of pervasive and surprisingly interdependent strategies for its

design.

Text-based interface. The text editing services and user interfaces of Pan

are designed around familiar models, to encourage smooth integration into

existing working environments. High-quality typography is used for the

visual presentation of text, a feature often not realized in editing interfaces.

Studies by Baecker and Marcus [4] and by Oman and Cook [48] suggest the

value of typography for program presentation,

Language description. Pan supports many languages, driven by a de-

scription of each. The descriptive medium is largely declarative. It supports

the definition of languages, but also includes specifications for usage conven-

tions, user interaction, and language-specific services.

Syntax recognition. To present the appearance of a “smart text editor,”

one that also supports language-based interaction, Pan is syntax-recognizing,
as are Babel [31], the Saga editor [37], and SRE [111. A syntax-recognizing

system is one in which the user provides text and the system infers the

syntactic structure by analysis. In contrast, we call systems like the Cornell
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Program Synthesizer [61], Mentor [20], and Gandalf [261 syntax-directed since

the primary mode of editing in those systems is template based. The syntax-

recognizing approach does not preclude a user interface that simulates

syntax-directed editing. A simple prototype has convinced us that

syntax-directed editing can be provided easily in a syntax-recognizing editor.

Similarly, most syntax-directed editing systems support some localized text

editing. As a by-product of syntax recognition, all language-oriented infor-

mation, including the primary internal tree representation shared with other

analyses, is derived originally from a textual representation.

Incrementality. Maintaining full service during editing demands that

derived information be revised as documents change. Pan is organized

around update algorithms rather than recomputation. This approach en-

hances the retention of previously determined information (some of which

may be user-supplied or otherwise nonrecoverable) and maintains computa-

tional efficiency in the face of collective document growth. Users are seldom

willing to compromise on speed, even for enhanced functionality.

Tolerance for variance. During the unrestricted text-oriented editing per-

mitted by syntax recognition, documents are most often ill-formed with

respect to the underlying language definition. Maintaining full service de-

mands that no more restrictions be placed on the user in this situation than a

standard text editor does in the presence of spelling errors. To emphasize the

distinction between this approach and those adopted by many language-based

editors, we refer to variances rather than to the traditional term language

errors. This approach acknowledges that experienced users often introduce

variances deliberately while working toward a desired result; users should

not be penalized by the system’s failure to understand the process [43].

Coherent user interface. The shift of emphasis from the preemptive “lan-

guage error” to the informative “variance” is only one example of ways in

which the details of language-based technology and implementation should

be concealed. Following the view that Pan is an interface between user and

document, language-oriented interaction is organized around a conceptual

model of document structure, tuned for each language to be convenient and

natural. Users are offered a variety of services that exploit rich internal data

while hiding representational complexity.

Extensibility and customization. Pan is designed for convenient adapta-

tion to variations among users, projects (group behavior), and sites. As a
research platform, it accommodates extension and evolution [40]. Language

description is only one aspect of Pan’s extensibility.

3.2 System Organization

Pan’s implementation supports users in three categories: clients, customizers,

and language description authors, 3 The classes of users can be characterized

3 It is the role of the user that is the issue here, All but the most naive client users customize
their environments in simple ways, blurring the boundary between clients and customizers
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by the tasks they perform and by the knowledge they need about various

aspects of the system (Figure 2).

For clients, Pan is the interface for browsing and editing documents.

Section 3.3 describes the surface characteristics of this interface, in particu-

lar, the rich text editing and presentation facilities available in every con-

text. Clients use libraries and language descriptions but need to know little

about them.

Customizers, on the other hand, augment extension and customization

libraries; this task requires expertise ranging from the shallow (e.g., adding

key bindings) to the deep (e.g., adding a new kind of directory editor). Section

3.4 describes some of the mechanisms that support customization.

Language description authors must be familiar with language processing

and with the techniques used by Pan’s document analyzer, described in

Sections 4 and 5. A language description contains information about syntac-

tic structure and context-sensitive constraints. Constraints usually include

the static semantic rules of the language, but can also include site-specific or

project-specific restrictions such as naming conventions.

As part of the emphasis on coherent user interfaces [661, language descrip-

tions also specify user interaction with generic language-based services

(described in Section 6) and may add new language-specific services. Mul-

tiple descriptions for a single underlying language may coexist, each pro-

viding a different interface for a different class of users. In this broader

view, the author is a user-interface designer and the language description a

user-interface specification.

3.3 Text-Based Editing Interface

Superficially, Pan appears to clients as a convenient bit-mapped, mouse-based,

multiple window text editor in the spirit of Bravo [39] and its many succes -

sors. Figure 6 of Section 6 shows a sample editing session. But Pan is also an
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editor that happens to be extremely knowledgeable about document structure

and the local working environment: languages in use, local conventions, and

perhaps the user’s own personal working habits.

The same text-oriented services are provided for every document, whether

or not it is written in a language that Pan is prepared (by prior language

description) to analyze. Users familiar with Emacs [571 find the transition

between the two editors smoothed by compatible key bindings [211 and

comparable text services. Generalized undo, kill-rings, text-filling, customiza-

tion, extension, and self-documentation are among Pan’s standard services.

In contrast to many syntax-directed editors, one might use Pan for editing

text without ever giving a thought to its other capabilities. But at any time

one may choose to broaden the dialogue with Pan and to exploit information

(maintained by Pan) about the document. Pan can be directed to use this

information to guide editing actions, to configure and selectively to highlight

the textual display, to present answers to queries, and more. Some of these

services are described in more detail in Section 6.

Two general (and configurable) mechanisms enable the persistent display

of information about documents: flags and visual text attributes. A flag is a

small glyph near the top right of a window; it may appear and disappear,

change shape, change color, or all three in response to a change of state

concerning the document. This document state might be whether it has been

modified, whether it may be modified, whether particular services are en-

abled, whether certain kinds of inconsistency have been detected, or any

other property that can be represented as an editor variable (Section 3.4).

A visual text attribute may be applied independently to any group of

characters in the display by Pan’s services: choice of font (from a configurable

map for each document, specifying up to eight fonts, proportionally spaced

and varying in height), choice of ink color, and choice of background color for

highlighting. The user’s current text selection (shared by all windows on a

document) is underlined, independent of any other attributes.

3.4 Customlzahon and Extension

Pan’s services are built upon a rich and flexible base, designed for experi-

mentation with document analysis techniques and the design of editing

interfaces. The language-based mechanisms described in this paper use the

infrastructure, as do a few experimental services that are not yet language-

based: a browsing interface to the file system, a hypertext-like browser for

UNIX4 man pages, and an elaborate internal help and documentation system

that can be configured for each category of user.

Although some of Pan’s customization and extension facilities are declara-

tive, others require programming. Unlike Emacs, we chose to provide access

to Pan’s implementation language (Common LISP) and its run-time system,

rather than inventing a separate extension language. Although that access

can be abused, it has not proved to be a problem in practice. Pan’s extension

4 UNIX is a trademark of AT&T Bell Laboratories.
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language is embedded in Common LISP and is supported by a number of

general mechanisms, all integrated with the on-line help system. Many of

Pan’s current services are implemented in the extension language.

Variables. In Pan, editor variables are scoped dynamically, allowing

bindings per document instance, per document type, and globally. This form

of scoping permits the organization of services at each level, including

language-specific modes. Many fundamental mechanisms are built using

variables, including user options, keyboard bindings, menus, character

classes, flags, font maps, color maps, hooks, and window configuration, all of

which respect scoping at a relatively fine granularity. New variables may be

defined at any time using a declarative syntax that supports options such as

predicates for type checking, notifiers for active values, and restrictions on

the scopes in which the variable may be bound.

Function and macro definition. Functions and macros may be defined at

the extension level, implying automatic integration with Pan’s internal

documentation system and its undo system. New functions and macros may

be defined at any time during an interactive session, along with declaratively

specified options. Those functions (called commands) that are bindable

to keystrokes and menus are automatically integrated into the run-time

command dispatch mechanism. Command arguments are specified with a

declarative syntax that directs the command dispatcher to collect values

dynamically (by user selection, by configurable prompters, or by default) with

automatic type checking and error recovery.

Generic exception handling. Pan distinguishes three categories of excep-

tions that may be signaled (along with a message) without concern for

context: announcement, warning, and error. Response to Pan exceptions is

context-sensitive, implemented by dynamically bound exception handlers

[641. For example, an error might arise while a language description is being

loaded. Language descriptions can be loaded in any of three contexts. First,

descriptions may be preloaded when a new Pan is being built. In this case,

the error terminates the build with a logged message. Second, descriptions

may be automatically loaded during a session with Pan. The handler in this

case displays the message, beeps, and resets the command dispatcher, effec-

tively terminating the command that triggered language loading. Third,

descriptions may be loaded directly from within a Common LISP debugging

loop. In this case, a recursive call to the debugger preserves the stack for

inspection. Extension-level primitives guard their internal state and res-

pect conventions for signaling exceptions; simple extension code can ignore

exception handling and still be robust.

4. DOCUMENT ANALYSIS

Document analysis in Pan relies on two components: Ladle (Language

Description Language) [12] and Colander (Constraint Language and Inter-

preter) [6]. Ladle manages incremental lexical and syntactic analysis; it

includes both an off-line preprocessor that generates language-specific tables

ACM Transactions on Software Engineering and Methodology, Vol. 1, No 1, January 1992



104 . R, A. Ballance et al

and a run-time analyzer that revises Pan’s internal document representation

to reflect textual changes. Colander manages the specification and incremen-

tal checking of contextual constraints. Like Ladle, Colander includes both an

off-line preprocessor and a run-time component. The editing interface (Sec-

tion 6) coordinates analysis and makes derived information accessible to

users and client programs.

This section describes each of Ladle and Colander in a bit more detail,

discusses how the two cooperate, and finally examines some important design

issues that cross all component boundaries.

4.1 Language Description Processing

A Pan language description contains declarative information for use by each

of Pan’s three components: 5

(1) Lexical and syntactic data, used by Ladle, describe the syntax of the

language and define an internal tree-structured representation (Section

4.2).

(2) The Colander portion specifies context-sensitive constraints, including,

but not limited to, the static semantics of the language (Sections 4.3 and

5). This specification may also direct that certain data derived during

contextual-constraint checking be stored and made available for general

use.

(3) User-interface specifications configure the editing irlterface for the lan-

guage (Sections 6.1 and 6.2).

Figure 3 illustrates the flow of information from a language description to

the run-time Pan system, for either preloading or dynamic loading at run

time.

Multiple Pan language descriptions could be written for a single language,

suited for different users and different tasks. The primary motive would be to

provide different collections of services of the kind described in Section 6.

However, one could also experiment with different presentation styles, al-

ternate internal representations (abstract syntaxes), or different styles of

Colander description. One area of active research concerns the layering of

language descriptions so that multiple views of a single abstract syntax can

be managed effectively.

A related area of research concerns sharing structures and description

components among language descriptions. Many languages share similar

semantic, as well as syntactic, concepts. The reuse of portions of the language

description simplifies the language description writer’s task and makes it

possible to share data and establish linkages among documents written in

different languages.

5 In the current implementation, each document must be composed using a single language Our
architecture and algorithms support documents composed from multiple languages, but the
current implementation does not.
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4.2 Ladle

An abstract syntax is described to Ladle using an augmented context-free

grammar, which also specifies the tree-structured representation. By defin-

ing the semantically relevant structures of the language, the grammar

implicitly defines the terms in which the rest of Pan accesses and manipu-

lates document components.

When text-oriented editing of syntactic structures is to be supported,

additional information enables Ladle to convert textual representations to

tree-structured representations and vice versa:

–The lexical description may include both regular expressions and bracketed

regular expressions, that is, expressions with paired delimiters such as

quote marks. Bracketing can be either nested or simple.

–The grammar for the abstract syntax is augmented by specifying those

productions necessary to disambiguate the original (abstract) grammar or

to incorporate additional keywords and punctuation. Ladle constructs a

full parsing grammar from the additional productions and the grammar for

the abstract syntax.

—Optional directives tune the Ladle syntactic error-recovery mechanisms

invoked during parsing. These directives also have important effects on the

editing interface (Section 6.1).

Internally, Ladle manipulates two context-free grammars: one describing

the abstract syntax and the other used to construct parse tables. The two

must be related by grammatical abstraction [8], a relation ensuring the

6 More recently, Butcher has recast this work in terms of grammatical expansion [12]
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1) (sfmt) – (Zf-sf??rt) “,”

2) (lf-strnf) - (If-part) (else-par-i)

3) ( tf-pari) — if (ezpr) then (strnts)

4) (eke-part) - c

‘~) I else (sirnts)

Concrete Grammar G’I

1’) (Sfmt) — If (ezpr) then (stints) “,”

-)
.,/

I f (ezpr) then (stints) else (sfrnt.s) “,”

Abstract Grammar @l

l“) (Strnt) – (erpr) (sfrnts)
~tl) I (ezpr) (stints) (strnts)

.-ibstract Grammar ~

Fig. 4. Grammatical abstraction

following:

(1) The abstract syntax represents a less complex version of the concrete

syntax, but structures of the abstract syntax correspond to structures of

the concrete syntax in a well-defined way. Singleton derivation steps and

nonterminals needed primarily for parsing can be suppressed. Keywords

and tokens of the concrete syntax that can be inferred from the abstract

structure need not be explicit in the abstract syntax.

(2) Efficient incremental transformations from concrete to abstract and from

abstract to concrete can be generated automatically; no action routines or

special procedures are necessary. The transformation from concrete to

abstract is triggered directly by actions of the parser.

(3) The transformation from concrete to abstract is reversible, so that rele-

vant information about a concrete derivation can be recovered from its

abstract representation. This property allows the system to parse modifi-

cations to documents incrementally without having to maintain the

entire parse tree.

(4) The relationship between the two descriptions is declarative and stati-
cally verifiable so that developers can modify either syntax description

independently. This approach allows a high degree of control over both

the structure of an internal representation and the behavior of the system

during parsing.

Grammatical abstraction is structural; it does not use semantic information

to identify corresponding structures. Two examples of grammatical abstrac-

tion appear in Figure 4. The concrete grammar GI describes the syntax of

conditional statements. The fragments ~1 and @l are both allowable (but

different) grammatical abstractions from the fragment GI.
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The Ladle preprocessor generates thetables needed to describe the inter-

nal tree representation as well as auxiliary tables needed during incremental

parsing and error recovery. A standard lexical analyzer generator and a

modified LALR(l) parser generator are also invoked, as shown in Figure 3.

To date, syntactic descriptions have been written for Modula-2, for Pascal,

for Ada, for Colander, and for Ladle’s own language description language.

Descriptions are being developed for a variety of other languages, including

C, C++, and FIDIL [28].

4.3 Colander

Colander supports the description and incremental checking of contextual

constraints. Constraints include nonstructural aspects of a language defini-

tion such as name binding rules and type consistency rules, as well as

extralingual structure. Examples of the latter include site- or project-specific

naming conventions, design constraints, and complex, nonlocal linkages

within or among documents.

Our approach is based on the notion of logical constraint grammars. In a

logical constraint grammar, a context-free grammar is used as a base.

Contextual constraints are expressed by annotating productions in the base

grammar with goals written in a logic programming language. 7An incremen-

tal evaluator monitors changes to the document and the derived information

in order to maintain consistency between them.

To date, logical constraint grammars have been used to define the static

semantics of programming languages, including Modula-2, to express some

aspects of design semantics, and to describe and maintain prettyprinting

information. Other problems that can be expressed using logical and con-

straint grammars include the kinds of analyses performed by tools such as

Masterscope [44] or Microscope [2].

Colander itself has three subcomponents: a compiler, a consistency man-

ager, and an evaluator. The Colander compiler generates the code used by

the evaluators as well as the run-time tables required for consistency mainte-

nance. The consistency manager, a simple reason maintenance system [22,

551, invokes the evaluator to (reattempt a goal. The evaluator, in turn,

collects the information maintained by the consistency manager. section 5

presents Colander in more detail.

4.4 Document Processing

Textual changes are incorporated into an internal tree in two phases: lexical

and parsing. Ladle’s incremental lexical analyzer synchronizes a stream of

lexemes with an underlying text stream, updating only the changed portions

of the lexical stream. The lexical analyzer maintains a summary of changes

for use by the incremental parser.

7 Logical constraint grammars should not be confused with corzstrczmt logic programming [15], a

generalization of logic programming.

s The compiler uses Pan to parse language descriptions. This involution is one example of how
Pan is used to support itself.
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Ladle’s incremental LALR(l) parser revises the tree-structured representa-

tion in response to lexical changes. This parser can create a tree from

scratch, but in response to lexical changes, it need only modify affected areas

of the tree. It uses a variant of an algorithm by Jalili and Gallier [33]. During

incremental parsing, the algorithm first “unzips” the internal tree along a

path between the root and the leftmost changed area. The algorithm

concludes by incorporating changes and “zipping up” the unzipped

portion. When unzipping and zipping up, subtrees are broken apart and then

reconstituted.

For the benefit of Colander and other clients, Ladle classifies tree nodes

after each parse: newly created, deleted from tree, reconstituted, and un-

changed. Semantic values associated with reconstituted nodes are retained,

even though their annotations may require updating.

Pan’s distinction between syntax and contextual constraints (or static

semantics) reflects a division common to almost all language description

techniques. It creates problems in practice for languages in which parsing

and semantic analysis must be intertwined [231, for example, the well-known

“typedef’ problem in the “C” language. Research into general solutions to

these problems within Pan is currently under way.

4.5 Information Retention

Since subtrees may be heavily annotated (both by tools and by users), actual

changes to the internal tree must be minimized to avoid needless information

loss. A simplistic implementation of the incremental parsing algorithm

would destroy and then recreate every subtree between a changed area and

the tree root. Widely shared data often appear close to the root of the tree.

The loss of semantic annotations on those nodes would cost lengthy and often

unnecessary recomputation, so efficient incremental constraint checking by

Colander depends on Ladle’s reuse (either physical or virtual) of these nodes.

Ladle uses an effective heuristic for reconstituting unzipped nodes. The

parser keeps a stack of “divided” tree nodes. When new nodes are needed,

they are taken from this stack if possible. A node is reused when it repre-

sents the same production in the abstract syntax as in its previous use and

when its leftmost child is unchanged between parses. The heuristic can err

either by not reusing a node or by reusing a node in a different (absolute)

position within the syntax tree. Neither case causes major difficulties, al-

though either may entail extra computation during incremental constraint

checking. In practice, the heuristic for reuse succeeds in the most critical

cases, preserving portions of the internal tree close to the root.

4.6 Tolerance, Recovery, and Variances

Documents are most often incomplete and ill-formed during editing sessions.

To maintain full service to the user, Pan’s analysis mechanisms treat such

problems as uariances, not as errors, and make every effort to treat them as

interesting but relatively normal occurrences. Pan’s internal document rep-

resentations are automatically extended to admit variances and to retain as
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much information as possible in their presence. Sections 6.1 and 6.2 describe

how the editing interface makes available information about variances.

Lexical analysis normally succeeds, since error tokens are generated when-

ever there are unexpected characters, leading to parser-based syntactic vari -

antes, If lexical analysis fails, a lexical variance is signaled. For instance, an

unterminated comment may lead to a lexical variance. A variance detected

during lexical analysis inhibits both parsing and contextual-constraint check-

ing, and all information that existed prior to the attempt to reanalyze the

document is preserved.

During parsing, Pan uses a simple, effective, panic mode mechanism [17]

for syntactic error recovery. The structures to which it recovers are those of

the abstract syntax. Directives in the Ladle portion of language descriptions

tune the recovery mechanism for each language. The presence of a syntactic

variance is marked in the internal tree by an error sub tree annotated with an

appropriate error message. The children of an error subtree are the lexemes

and subtrees that were skipped over during the recovery, This recovery

strategy is similar to that used in the Saga editor [37]. Any extant annota-

tions on the subtrees within the error subtree are preserved, including

annotations created by Colander. Contextual constraints within an error

subtree are not attempted by Colander. When the user corrects the variance,

prior annotations can immediately be reused. This is just a special case of the

general information retention problem.

Contextual-constraint checking can proceed in the presence of syntactic

variances; any constraints within error subtrees are simply ignored. Unsat-

isfied contextual constraints form another kind of variance, resulting in

annotations on offending nodes.

5. LOGICAL CONSTRAINT GRAMMARS

A great deal of Pan’s analytical power, as well as its potential for future

extension, derives from the adaptation of logic programming and consistency

maintenance, as introduced in Section 4,3, This section reviews the theoreti-

cal foundations of logical constraint grammars [6, 8] and describes Pan’s

particular language and implementation, Colander, in more detail.

Logic programming is a natural paradigm for the specification, checking,

and maintenance of contextual constraints. First, context-sensitive aspects of

formal languages are often described informally using natural language that

approximates logical structure. Translation of these descriptions into clausal

logic is relatively straightforward. Second, the act of checking contextual

constraints an be viewed as satisfying the constraints relative to some

collection of information. (In pass-oriented applications like compilers, this

collection of information is represented by a symbol table. ) Finally, the

presence of a logic programming language implies the existence of both an

inference engine and a logic database. The extensibility of Pan, beyond

conventional constraint checking, derives from the presence of the database

as a shared repository and from the generality of the logic-based inference

engine.
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A logical constraint grammar (LCG) is a context-free grammar G in which

symbols and productions have been annotated with goals, expressed in a

logic-programming language, that specify constraints on the language gen-

erated by G. Goals are satisfied using backtracking search based on uni-

fication, as in PROLOG. An eualuator for an LCG description begins by

executing the goals that are independent of any syntactic structure. These

goals initialize the data shared by all of the documents written in a given

language. The evaluator then attempts to satisfy all goals associated with

syntactic structures present in the document. The evaluator stops processing

whenever all of the goals are successfully proved or no further goals can be

proved. A document is considered well formed whenever all of its associated

goals have succeeded.

As in unrestricted attribute grammars, circularities among the goals in an

LCG description can arise. It is left to the writer of an LCG description to

remedy circularities.

Other well-known specification formalisms for language implementation

include attribute grammars [18, 531, action routines [36, 451, context relations

[51, and natural semantics [341. Attribute grammars provide a declarative
mechanism for defining attribute (property) values at subtrees in a syntax

tree. An attribute value at a subtree is a function of the attribute values

defined at neighboring subtrees; they may also depend on other values

defined at the current subtree. Unfortunately, an attribute grammar itself

usually specifies only the attributes and their interrelationships. A separate

formalism, usually a general-purpose programming language, must be used

to specify the semantic functions and the data types. Yet much of the

interesting information in an attribute-grammar-based specification resides

in the code that implements the semantic functions and data types. Using a

separate formalism hinders the analysis of interactions within a language

description. Another drawback to attribute grammars is that there is no easy

way to make information in the attribute values available to other tools [321.

Finally, most algorithms for incremental evaluation of attribute grammars

unduly constrain the kind of manipulations that an interactive system can

support [66].

Action routines are arbitrary procedures associated with nodes in a syntax

tree. An action routine is invoked whenever a particular event concerning its

associated node occurs. The actual events that can cause action routines to be

invoked depend on the implementation. Thus, action routines form a simple
and powerful mechanism for implementing contextual constraint checking,

but they require a developer to deal with all aspects of incrementality

explicitly.

Context relations, as used in the PSG system [5], provide a novel means for

composing fragments of syntax trees. Each program fragment is summarized

by its context relation. A fragment is considered valid if it can be embedded

into a correct (larger) fragment. A context relation summarizes the set of all

“still-possible attribute values,” the values that have not been ruled out by

the evaluation of other context constraints. An empty context relation indi-

cates that there is no possible valid assignment of values to the attributes of
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the fragment, and therefore indicates an error. The paper by Bahlke and

Snelting [5] describes their incremental analysis algorithm. Context rela-

tions, like attribute grammars, relegate many of their description details,

such as name-resolution rules, to a separate formalism.

Natural semantics [34] is a logic-based formalism based on Plotkin’s struc-

tured operational semantics [49]. In natural semantics, a language descrip-

tion specifies an abstract syntax together with axioms and inference rules

that characterize the structures in the abstract syntax. The collection of

axioms and inference rules is identified with a logic based on natural

deduction [50]. Reasoning about the target language is reduced to proving

theorems in that logic. Tree pattern matching is used to determine which

rules apply in any given case.

Typol [19, 34], the semantic description language used in Centaur [10], is

based on natural semantics. A Typol description is a collection of axioms and

inference rules. The general evaluation strategy is to compile the rules of the

description into PROLOG rules and the resulting single equation to be

proved into a PROLOG goal,

Natural semantics and Typol alone provide an elegant descriptive mecha-

nism for many kinds of contextual constraints. The original PROLOG-based

implementation, however, was inefficient since it was not incremental. Attali

[31 addresses the problem of incremental evaluation in Typol by transforming

a Typol definition into an attribute grammar, thereby providing access to

methods for incremental attribute evaluation. ~ttali also shows how to

implement partial evaluation of Typol programs and how to extend the

approach to dynamic semantics. While the transformation from Typol to an

attribute grammar achieves incremental evaluation, the attribute values

manipulated by the attribute grammar are not necessarily modifiable incre-

mentally. This means that, without care, the entire symbol table for a

program will be treated as a unit unless techniques like Hoover and Teitel -

baum’s [30] are adopted. Moreover, by adopting attribute grammars, one

adopts not only their strengths but also their weaknesses.

Like attribute grammars, LCGS are primarily operational descriptions of

contextual constraints and could be used as implementation vehicles for

higher-level description techniques. Like context relations, LCGS allow one

to focus on the creation and use of derived information in a database setting,

rather than on the flow and interaction of information within the evaluator.

Nonlocal interactions among structures in a document are automatically

handled via database interactions. The author of an LCG description is

allowed to specify both the structure and the content of the logic database.

The information in the database can be made available to users via the

support facilities discussed in Section 6.

5.1 Incremental Evaluation

For a given language description, satisfying some goals requires satisfying

other goals. Many interactions between goals act through the logic database.

In other cases, the flow of contexts or other data from one subtree to another

can be locally determined. An LCG evaluator may use, but does not require,
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knowledge of dependencies between goals. Naturally, if the user of an LCG

system takes advantage of the evaluation strategies employed by the system,

the performance of the evaluator can be enhanced.

Inconsistencies between documents and their derived information arising

from incremental changes are detected by a consistency manager, a simple

reason maintenance system. When an inconsistency is detected, the consist-

ency manager determines which derived data must be removed and which

goals have to be reattempted. Incremental evaluation continues until consist-

ency is restored or until a circularity y is suspected.

Careful selection of goals to be retried after database modifications is

crucial to efficient incremental evaluation. Removal of data from the database,

the simpler of the two cases, is handled using dependency-directed backtrack-

ing [58]. The evaluator records which data are used to satisfy each goal.

When a datum is removed, the consistency manager retries all those goals

whose satisfaction depended on it.

Two different ways to handle additions to the database were developed:

holes and shadowing rules. Holes provide a means for representing data

whose absence from the database was used in satisfying a goal. When a hole

is filled, the consistency manager reattempts all of the goals that depended

on the absence of that datum. Holes are computationally efficient, but

memory intensive. The strategy of using holes does not scale well when many

sparse collections are searched for a datum. Thus, holes are best suited for

situations in which the data whose absence they represent would normally be

present.

Shadowing rules are inference rules, computed by static analysis of an

LCG description, that help to determine which goals must be attempted

again when a datum is added to the database. Shadowing rules require less

storage but more computation than holes, making them better suited for

situations in which data sparsely populate the database. The presence of a

static analyzer simplifies descriptions and relieves the authors of language

descriptions from specifying many details.

5.2 LCGS and Logic Programming

Making LCGS practical required several modifications to the basic PROLOG

model of logic programming [59]:

Partitioned database. The logic database is explicitly structured into col-

lections of data tuples. Collections and data tuples are first-class objects:

They can be created and destroyed dynamically. Collections are created and

data tuples are added to collections as a side effect of satisfying a goal. Data

tuples can refer to collections but cannot contain unbound logical variables.

Partitioning the logic database into collections improves the performance

of an incremental evaluator while allowing the author of a language descrip-

tion to express directly the partitionings often found in languages. For

example, collections can be used to represent scopes in a programming

language.
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Distinction between code and data. Terms that can appear in the data-

base must be distinct from terms that can appear as the heads of proce-

dure clauses. This limitation assures that an entire collection of goals and

procedures can be statically analyzed.g

Only ground terms may be added or removed from the database. This

assures that all changes to the logic database will be explicit.

Ownership. Every collection and data tuple in the database are owned by

one or more subtrees in the document being edited. Collections are perma-

nently associated with their owning subtree. The tuples in a collection may

change repeatedly, but the collection itself retains its existence and identity

until its owning subtree is destroyed. Ownership is used by the consistency

manager to relate changes in the underlying document to changes in the

information being maintained.

Contexts. Each subtree in a document has zero or more associated collec-

tions of tuples, called its contexts. All goals associated with that subtree are

evaluated relative to the subtree’s cent exts. The contexts of a subtree are

determined dynamically.

The primary use for a context is to provide access from the abstract syntax

tree to other collections. A secondary use is to propagate information locally

among subtrees of the abstract syntax tree, similar to the methods developed

for the Ergo system [47].

separating the context from the goals in an LCG helps the author of a

language description to focus on the essentials of each. Goals are defined

relative to contexts; contexts must contain the information necessary to

satisfy or disprove their goals.

Ordering among goals. The ordering among goals is not formally speci-

fied, so standard PROLOG programming techniques that rely on known

orderings among data tuples in the database may not apply. In particular,

the use of assert and retract in an LCG differs from their use in PROLOG.

5.3 Example

Figure 5 shows a very simple LCG for a language that requires that each

name be defined before it is used, Names are defined by either declarations

or importation; names are used in generic “uses” and in procedure calls. The

notation resembles the Colander language. An identifier prefixed by “$”

denotes a node in the abstract syntax tree; “$$” denotes the node associated
with the goal currently being satisfied. Identifiers prefixed by “?” denote

logical variables; the anonymous logical variable is denoted by ??, The

notation (?Form, ?Collection) indicates that ?Form is to be evaluated with

respect to the given collection. An “entity” is a special kind of collection that

can be used to represent linguistic objects such as variables. The first three

sections of the LCG define the facts and procedures used in the specification.

9 Extending the analysis to handle the dynamic addition of new goals or clauses to the logic

program is straightforward in principle but costly in practice. It requires a new level of
dependency-directed backtracking relating the inputs and outputs of the static analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No 1, January 1992.



114 . R. A. Ballance et al

Definition-Specific Data Tuples:
declared ( ?Narne, ?Enttty) /. Fact repmsent]ng b,nd,ng of !Name to ~Enttty */

imported ( ~Name, ?Ent~ty) /+ Fact reprmentlng ,mportatjon of ~Name as ~Entzty +/

enclosing-scope ( ‘Scope) J, Fact representing the next outer scope ,/

type-of ( ‘Type-mark) /* Entity propert.v representing tbe type
of an entlt.v—either “Id” or “proc” */

Definition-Specific Procedures:
< visible (’2Name, ~Entzty),~Scope > < declared ( ?Narae, Wnttty), ‘~S’Cope >

< visible ( ~Narne, $’,!lnt~ty), ~Scope > < imported ( ‘zName, ‘~Enttty), ~$cope >

< lookup ( ‘~Fomn ), ~Scope > < ‘vForm, ?Scope >, I
< lookup ( ?For-rn), ~Scope > < enclosing-scope ( $’Scopel), ~Scope >,

< lookup ( ‘Form), ‘2Scope1 >

Builtin Procedures:
assert (< 7Tuple, ?Col[ectzoa >) /. .4dds ~Tuple to ~CollectIoJt ,/

context ( ?LL,c, ‘~sc(]p? ) /. B]nds :?Scope to s,ngle context of ‘~Loc */

new-entity ( ‘2Ent2ty) /.Binds ‘2Enizty to un)que marker */

new-cOntext* ( ?C’onte2t) /+ Binds ‘2C’ontext to a new cc)nte.~t and

propagates ~Contezt to al~ subtrees */

not ( 7Form) /+ Suc.eeds ,f and only lf ?Fo~m falls */

string- name( ~Loc, ‘7;Vame) I* B!nds ~.h’eme tostring nan]e of QLOC */

Grammar:
(~Oc~rne~~)- (~ef)’ (USC)’

(clef ) - “DEF” id

context ($$, ‘Scope),

string-name ($id, ‘7Name),

not (< vmble ( ‘2Nume, ‘v~), @,Scope>)

“Invalld redeclaration of ‘2.Vame m this scope” ,

new-entity ( 7Enf2trJ),

assert ( < type-of (“id”), 2Enttty >),

assert (< declared (~Name, ~Entzty), YS’cope >),

(clef ) - “IMPORT id /* S]m,lar to ~oals for “DEF’ above */

(clef ) + “PROC’) Id (clef)” (we)”

context ($$, ‘Canfezt),

new-cOntext* ( ‘2h’eu-conteH ), /* Create new, context and propagate to chddren ./

assert (< enclosing-scope ( ‘Contezt), 2Nero-cOntezt >)

/+ Declare Id as a procedure ./

(use) ~ ‘tTSE” id

,- context ($$, ?. Scope),

string-name($ld, ‘zName),

< lookup (visible ( ~Name, ~EntIty)), ~Scope >

“NO Identlfler named ‘~,vame could be located” ,

< type-of (’old”), 2Enttty > “ ~Name not declared as an Identlfler”

(use) — “CALL” id /. Check that id lS declared as a procedure +/

Fig. 5. Fragment of a simple logical constraint grammar

The goal associated with the production [(clef) + “DEF” id] first accesses

the current context and binds the external (string) name of the identifier

using the procedure string-name. The goal then checks that no other bind-

ing to that name occurs in the current scope. If another binding is present,

the not term fails, and an error message will be created. Otherwise, the goal

creates a new entity that will represent the variable being declared, sets the
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type of the entity to ‘id’, and adds a fact that will represent the new binding

to the current scope.

The subgoal (lookup(visible( ?Name, ?Entity)), ?Scope), appearing in the

goal associated with [(use) ~ “USE” id], searches for a binding involving the

name of the identifier appearing in the production. Once again, the primitive

string-name is used to get the actual external name of the identifier. The

term lookup implements nested block structure by recursively traversing

outward through nested scopes, evaluating the procedure visible within each

scope. The use of the cut operator (“ !‘’) in lookup ensures that only the first

solution to ?Form will be investigated. If the subgoal involving lookup fails,

an error message is generated. If it succeeds, then ?Entity will be bound to

the entity located in the search; the type-of property can then be validated.

In the goal associated with [( de~) + “PROC” id (clef) *( use) *], the built-in

function new-context* is used to create and propagate a new collection to all

of the direct descendants in the internal tree. Colander also provides a

primitive that allows greater control over which subtrees inherit the newly

created collection.

One simple extension to this example is to maintain a call-graph of the

program by adding a goal associated with the production [(use)+’’CALL” id]

that adds facts of the form “calls(?Procl, ?Proc2)” into some collection.

Database triggers could then be used to update a graphical view of the call

graph incrementally.

5.4 An Implementation: Colander

The Colander language, one of Pan’s formalisms for language description,

embodies the LCG approach. The language and its run-time support extend

the basic approach in ways that improve either the efficiency of the descrip-

tion, the usability of the description language, or both.

Pass-structured evaluation. Colander partitions the goals associated with

a syntactic structure into two classes: those goals whose primary use is to

establish the context used by that structure or by its substructures, and those

goals whose primary use is to express a contextual constraint. The classifica-

tion of goals is indicated explicitly in a Colander description. Goals in the

first class are called first-pass goals. They are evaluated during a top-down

preorder walk of the internal tree. Goals in the second class are called

second-pass goals. They are evaluated after the first-pass goals and, in the

current implementation, are evaluated after the first-pass goals of the sub-

tree’s children have been evaluated. For example, the first goal associated

with the production [( def ) ~ “PROC” id (clef )*( use)*] should be a first-pass

goal, while the second goal on that production could be a second pass goal. In

general, goals that establish contexts should be first-pass goals; all others

will be second-pass goals.

Multiple kinds of collections and data tuples. Colander distinguishes three

kinds of collections, each holding its own kinds of data. Datapools are

collections of facts. Datapools are used to aggregate facts that can or should
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be treated as a single unit. There can be multiple instances of the same fact.

For example, each scope in a program might be represented using a separate

datapool containing facts about the declarations appearing in that scope,

together with data relating that scope to the other scopes in the program.

An entity is a collection that can be used to represent objects of the

described language. Entities can be used to hold the attributes of a particular

object such as a variable, a procedure, or a paragraph. Information about

entities is represented using entity properties. A property is a named value

associated with a collection. Properties are single-valued; unlike facts, it is

not possible for a collection to contain more than one property value with a

given property name.

Subtrees can also be considered as collections holding subtree properties.

Subtrees are created and destroyed by Ladle during syntactic analysis.

Structural information about the internal tree is represented using subtree

properties.

Maintained subtree properties. Main tained subtree properties are like at-

tributes in an attribute grammar. Their values are defined by local proce-

dures associated with the grammar production that defines the subtree. The

value of a maintained property is computed relative to the subtree for which

the property is being defined and can depend on any other values available,

including the properties of the parent, child, or immediate sibling subtrees.

Maintained properties are calculated on demand. Once the value of a

maintained property is computed, it is stored in the logic database. The

consistency manager is then responsible for recomputing the value of a

maintained property as necessary.

A typical use for maintained subtree properties is in determining the type

of an expression. The value of the type would be stored in the maintained

property, and the subtree-specific procedure would define how to compute the

type as a function of the subtree’s subexpressions.

Although an attribute grammar can be emulated directly by an LCG using

only maintained subtree properties, it is far more efficient to use the database

and the context for moving values through the tree. In most attribute

grammar descriptions, inherited attributes either summarize relatively local

structural information about the internal tree or else consist of a “symbol

table” containing nonlocal information. Colander subsumes the “symbol

table” into the database along with other information about the tree. Local

structural information can be passed like inherited attributes by creating
and propagating new context datapools containing that information. Synthe-

sized values propagate from leaves toward the root, as in attribute gram-

mars; these appear frequently in Colander descriptions as maintained

properties.

Client properties. A client property is a subtree property that is neither a

structural property nor a maintained property. Client properties are usually

manipulated by programs or components via a client interface, although they

can appear in a Colander description. Client properties are not under consist-

ency maintenance unless they are declared and used within the language
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description. One way in which we have used client properties is in the

prototype of a context-based prettyprinter. The prettyprinter attaches its own

information to subtree nodes using client properties.

Database triggers. Colander provides triggers that are activated when
data are added or removed from the database. Triggers provide a uniform

mechanism for implementing notifier functions used by clients. They are

used internally as well, for example, to implement shadowing rules.

Messages to the user. Any term appearing in a goal or a procedure body

can be suffixed with a message. When a goal fails during evaluation, the

message associated with the most recent term to fail is captured and used as

described in Section 6.2.

Special primitives. The internal tree used in Pan allows subtrees with an

arbitrary number of children called sequence nodes. Colander provides sev-

eral functions for mapping goals over the children of a sequence subtree.

Colander also provides two special functions that interact with the consis-

tency manager. The function all-solutions is like Prolog’s bagof operator. It

can be used to calculate all solutions to a goal, assuming that the goal

terminates. It is reevaluated whenever the set of solutions might have

changed, A typical use for all-solutions is to gather up all of the data tuples

matching a particular query. For example, all-solutions might be used to

obtain all of the bindings to a particular name in order to discriminate

among the possible definitions of an overloaded operator. The function

notever is a form of negation that is monitored by the consistency manager.

If a new solution arises that might cause the not to fail, then the goal

containing the notever will be retried.

6. USER SERVICES

Pan’s ultimate purpose is to assist its intended users. This section discusses

some of the technical problems associated with providing coherent user

services. A more thorough treatment of Pan’s approach to delivering lan-

guage-based technology appears elsewhere [661.

6.1 Document Models

User and system must communicate about what is being edited. Language-

based editors often present a document model based implicitly on internal

representations, and the abstract syntax tree is sometimes proposed as a

“natural” model for user interaction. In practice, however, the design of a

tree representation (the abstract grammar in Pan) is strongly influenced by

internal clients of the data (e. g., a Colander specification). These influences

are unrelated to the way users understand document structure.

Pan decouples internal representation from user interaction. The language

description mechanism provides a loose framework in which the author of

each description is expected to design a model of document structure that is

appropriate for the language, its intended users, and their tasks. Alternate

descriptions for a single underlying language can provide different services
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based on different models, suitable for different users and tasks. For exam-

ple, one might provide different operand classes and more elaborate error

handling for novices than for experienced users, or different query services

for reengineering than for authoring.

This framework is based on two assumptions about how people understand

document structure: they think in terms of structural components instead of

trees, and they think of those components in the specific terminology of

particular languages. To most users, a “statement” is just a “statement”; it

is neither an “operator” nor a “subtree. ”

Operand classes. Pan’s primary mechanism for hiding internal document

representation is the operand class. Operand classes are arbitrary, possibly

overlapping, named collections of document components. They form the basis

for structure-oriented selection, navigation, highlighting, and editing. Class

membership is dynamic, based on class definition and the current database of

derived information.

The relationship between tree operators and operand classes is user-ori-

ented and many-to-many, in contrast to the use of operators and phyla [35] for

tree specification. Operators not in any operand class are hidden from users

and are not part of the structural model. In the Synthesizer Generator, a

similar effect is achieved by the “resting place” mechanism [52], but there is

only one (anonymous) class of resting places and its specification is embedded

in the unparsing scheme rather than being dynamically determined. Oper-

and classes define “views” of documents by controlling access to under-

lying structure, an approach that is independent of and complementary to

document display as exemplified by Garlan’s unparsing [24] and Reiss’s

views [511.

Class definition. With a few built-in exceptions,l” operand classes are

defined by predicates on nodes of the internal tree representation. A new

class may be created at any time using a declarative syntax that specifies the

class name, the defining predicate, and options. One particularly useful

option specifies daemons to be invoked before or after any structural selection

based on the class.

Several language-independent classes are predefine. For example, ‘Syn-

tactk Error’11 and ‘Unsatisfied Constraint’ denote the sets of syntactic

and contextual-constraint variances, respectively. ‘Language Error’, de-

fined to be the union of ‘Syntactic Error’ and ‘Unsatisfied (constraint’, is

more appropriate when the distinction would be irrelevant or confusing to

the user. The class ‘Query Result’ permits perusal of a set of nodes returned

by the most recent database query.
Each language description adds language-specific classes, starting with

structural ones such as ‘Expression’, ‘Statement’, ‘Declaration’, and

10The classes ‘Character’, ‘Word, and ‘Line’ are defined in terms of the text stream, and
‘Lexeme’ in terms of the lexical stream; all offer services similar to the structural classes,
11Although ‘syntax errors’ are Just a kind of variance in the Pan system, to users they are

designated by their traditional name.
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‘Procedure’. Since classes may overlap, a node representing a malformed

statement might be in both the ‘Statement’ and ‘Syntax Error’ classes.

Finer distinctions are possible. In one description, ‘Language Error’

contains all syntactic variances plus those unsatisfied constraints concerning

the language definition; other unsatisfied constraints are in the class

‘St ylistic Violation’.

Diagnostics. Each language description associates diagnostic messages

with potential variances. The presence of variances in a document precipi-

tates no special action other than the appearance of designated panel flags.

The user requests more information by invoking appropriate services.

Pan’s other services take no particular notice of variances. Malformed

statements, statements with unsatisfied constraints, and sometimes even

statements within malformed blocks can still be treated as statements.

Ill-formed and well-formed documents need not appear much different.

6.2 Using Derived Information

Text editing is so fundamental in Pan that it might not be apparent at all

when language-based information has been derived. Pan’s default configura-

tion specifies panel flags that appear when this is the case, as shown in

Figure 6. Derived information is exploited only through specific services, all

optional and under user control. This section describes a few such services,

deferring discussion of language-based editing to Section 6.4.

Presentation enhancements. Visual text attributes draw attention to par-

ticular document components. For example, font shifts reveal lexical cate-

gories: keywords, identifiers, comments, and unanalyzed text. This use of

typography contributes significantly to program readability in our experi-

ence, but only when the font selection is tuned for each language.

Prettyprinting reindents documents to reveal syntactic structure. More

advanced forms of prettyprinting for program documents, including seman-

tically driven elision, are under development.

Structural highlighting may be designated for text in particular categories,

varying the color of both text and background. Useful examples include the

results of the most recent database query and different categories of vari-

ances. Although highlighting carries less information than diagnostic mes-

sages, experienced programmers often diagnose simple variances at a glance,

once attention is drawn to them.

The operand level. Each Pan window has a current operand level, chosen

by the user from a menu of classes specified by the language description (see

Figure 6). 12 The operand level is a weak input mode that modulates the

operation of generic commands like Cursor-Forward, Cursor-Backward,

Cursor-To-First, Cursor-To-Last, Cursor-In, Cursor-Out, Cursor-

Search-Forward, Select, and Delete. The operand level affects no other

commands and never affects text-oriented editing.

12As with most menu-based services, equivalent keyboard commands are available.
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Structural navigation. The operand level enables language-specific navi-

gation. For example, when the current level is ‘Statement’, a press of the left

mouse button selects the “nearest” (based on a heuristic) component defined

to be in that class. Generic navigation commands perform various tree walks,

selecting only components in the class.

Operand classes associated with variances are usually configured (by

specification of an appropriate after-daemon) to announce the diagnostic

associated with each member as it is selected. Structural navigation then

supports the location and diagnostic of each variance in turn.

6.3 Inconsistency and Reanalysis

Any situation where one kind of information is derived from another invites

inconsistency between the two. The syntax-recognizing approach, where in-

formation is derived from text, is no exception. One aspect of the problem

arises during text-oriented editing, when derived information may disagree

with what the user sees. For example, font shifts would be incorrect immedi-

ately after the textual transformation of a statement into a comment. In most

cases, however, presentation enhancements remain almost correct in ways

easily understood by experienced users. Designated panel flags (in Figure 6,

a treelike glyph for syntax and ‘D’ for the Colander database) appear pale

during inconsistency.

To avoid more serious confusion, Pan’s automatic reanalysis policy ensures

that language-based interaction takes place only when text and derived

information are consistent. Should the user invoke such a command during

inconsistency, Pan triggers incremental analysis before attempting it. Since

analysis (almost) always succeeds, this policy does not restrict the user,

although it may cause delay. Possible relaxations of this policy are being

explored, where more language-based services might usefully work on an

almost correct basis using inconsistent information.

Pan’s lazy reanalysis policy presumes that the user understands the gen-

eral state of the document and can judge trade-offs. Incremental analysis

takes place only when requested, either implicitly by invocation of an op-

eration that triggers automatic reanalysis or explicitly by invocation of

Analyze-Changes. Nothing prevents a Pan user from typing an entire

document without analysis. Pan is designed to encourage frequent analysis

by making it cost-effective to the user.

6.4 Mixed-Mode Editing

Pan’s approach to language-based editing is to broaden options, not ‘LOnarrow

them. The user should be able to edit textually at any time and at any place

in the document presentation; it should be equally possible to edit in terms of

derived information at any time and at any place.

A dual aspect cursor. Pan commands, text- or structure-oriented, may be

invoked without prerequisite. Two mechanisms make this work. The first,

automatic reanalysis, ensures that derived information is consistent with the
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text for any operations that require it. The second is Pan’s dual aspect edit

cursor.

Pan’s edit cursor always has a textual location, displayed as an inverted

box. It may also have a location corresponding to some structural component,

as it does in Figure 6 where the cursor is at a ‘Statement’ (revealed by

colored background shading). Setting the structural cursor also selects the

component textually and positions the text cursor at its beginning.

Any editing operation that requires a cursor location uses the appropriate

aspect: text or structure. If the cursor has no structural aspect, then one is

inferred from the text cursor’s location by the same mechanism used when

the user selects a structural component by pointing with the mouse. This

design resolves the “point versus extended cursor” problem [62] by providing

both behaviors simultaneously.

Simple editing. No user commands in the prototype implementation mod-

ify internal document structure directly. Cut, when invoked with a struc-

tural selection (as in Figure 6), achieves the same effect by moving the

associated text out of the stream and into the clipboard. The internal

representation of the deleted component persists until the next reanalysis,

but it is invisible because automatic reanalysis will remove it before any

commands can use it. Paste inserts text from the clipboard. If the context is

appropriate, subsequent incremental analysis derives equivalent structural

information quickly.

When a structurally inspired Cut and Paste sequence violates the underly-

ing language definition, the operations succeed anyway. Problems are diag-

nosed by precisely the same mechanisms that handle other variances, and

the user is free to continue. By discarding derived information, this approach

increases analysis time slightly. On the other hand, it guarantees the well

formedness of the internal representation, since the language definition is

already built into Pan’s parser.

Complex mechanisms for direct structural modification can confuse users;

editing operations may fail for the kinds of reasons Pan hides. For example,

it might seem reasonable to copy the formal parameter list of a procedure

definition and paste it into a procedure call. Although the two lists of

identifiers could be textually identically and conceptually related from a

user’s perspective, implementation concerns may dictate incompatible inter-

nal representations. General solutions to this problem involve guessing the

user’s intent, an approach avoided in Pan.
Another cost of Pan’s textual approach is the loss of any nonderivable

annotations on document components during structural Cut and Paste. We

believe this can be repaired by the following (as yet unimplemented) expedi-

ent: cut both text and structure, paste text, reanalyze, and copy nonderivable

data only when the new structure is isomorphic to the old.

Other language-based operations. The ultimate advantage of language-

oriented editing lies in an open-ended collection of services that draw upon a

rich repository of information to assist users in commonly performed tasks.

Some services locate and diagnose variances, as described above. This section
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describes other simple examples, emphasizing first that services are imple-

mented by combining generic and language-specific components, and second

that the user need not be aware of complex internal representations that

make them work.

One of the few forms of query supported by ordinary text editors is textual

search. Searching in Pan can draw upon any derived information. For

example, one command locates the declaration and all uses of a programming

language variable, which the user identifies by pointing. The results of this

and other language-based queries are made available by an interface similar

to the one used for variances. Text associated with components of the current

query is highlighted, and the user may set the operand level to “Query

Result” to navigate through the components. The query itself is defined as

part of the language description and supports other services, for example, a

command that moves the cursor to the declaration of a specified variable. The

latter command is an example of navigation through hypertext-like links,

defined by the underlying language and recorded in the database during

analysis. Like all powerful text editors, Pan supports textual replacement

based on regular expression matching. But users sometimes want replace-

ment to depend on language structure rather than on textual structure, even

when the two are similar. For example, whole-word replacement (where

replacing substrings of longer words is not desired) in natural language

documents is difficult to specify using patterns. One variant of Pan’s replace-

ment command matches patterns only against words (lexemes), as defined by

the particular language. Another variant renames variable instances in

programs, drawing upon information in Pan’s database to avoid renaming

enclosed variable definitions that have the same lexical name but that are

logically different variables.

7. RETROSPECTIVE

Pan has limitations with respect to our long-range vision: current description

techniques are aimed at a particular class of formal languages; the imple-

mentation supports only one language per document; a single analysis

may span multiple documents, but only within one language; the system

provides only part of the desired flexibility in generating visual presenta-

tions. Support for novice programmers and learning environments, support

for program execution, graphical display and editing, and the use of a

persistent software development database are not supported in the current

system. The Ensemble project, which will create a successor to Pan, is

addressing some of these issues.

Ongoing research projects are using the leverage gained from Pan. Proj -

ects near completion include the development of advanced user-interaction

techniques, including the use of Colander to specify and control user-centered

program viewing [65], the development of new language descriptions,

and investigations into ways to strengthen Pan’s language description

techniques [231.

With the exception of a simple noneditable tree display, the presentations

in Pan are all textual and are all closely coupled to the concrete syntax
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descriptions of the documents. The Ensemble project is generalizing Pan’s

approach in three ways:

(1) much richer mappings among document structure, presentations, and

specification of appearance, building heavily on the experience gained

from the VORTEX document system [13, 14];

(2) the extension of editing and viewing to a wide range of media–text,

graphics, sound, and video; and

(3) integrated support for compound documents.

The notation of logical constraint grammars, being based on clausal logic,

has proved to be quite effective for expressing queries against the database.

Complete descriptions of languages, however, rapidly become verbose. One

approach to remedying this situation is to use the LGG mechanism as an

implementation vehicle for higher-level semantic descriptions, such as those

based on Natural Semantics [341.
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