
Efficient and Flexible Incremental Parsing

TIM A. WAGNER and SUSAN L. GRAHAM
University of California, Berkeley

Previously published algorithms for LR(k) incremental parsing are inefficient, unnecessarily re-
strictive, and in some cases incorrect. We present a simple algorithm based on parsing LR(k) sen-
tential forms that can incrementally parse an arbitrary number of textual and/or structural mod-
ifications in optimal time and with no storage overhead. The central role of balanced sequences in
achieving truly incremental behavior from analysis algorithms is described, along with automated
methods to support balancing during parse table generation and parsing. Our approach extends
the theory of sentential-form parsing to allow for ambiguity in the grammar, exploiting it for nota-
tional convenience, to denote sequences, and to construct compact (“abstract”) syntax trees directly.
Combined, these techniques make the use of automatically generated incremental parsers in inter-
active software development environments both practical and effective. In addition, we address in-
formation preservation in these environments: Optimal node reuse is defined; previous definitions
are shown to be insufficient; and a method for detecting node reuse is provided that is both simpler
and faster than existing techniques. A program representation based on self-versioning documents
is used to detect changes in the program, generate efficient change reports for subsequent analy-
ses, and allow the parsing transformation itself to be treated as a reversible modification in the edit
log.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environ-
ments—interactive; D.2.7 [Software Engineering]: Distribution and Maintenance—version con-
trol; D.3.4 [Programming Languages]: Processors—compilers; parsing; translator writing sys-
tems and compiler generators; E.1 [Data]: Data Structures—trees

General Terms: Algorithms, Languages, Performance, Theory
Additional Key Words and Phrases: Abstract syntax, ambiguity, balanced structure, incremental
parsing, operator precedence, optimal reuse

1. INTRODUCTION

Batch parsers derive the structure of formal language documents, such as pro-
grams, by analyzing a sequence of terminal symbols provided by a lexer. Incre-

This research has been sponsored in part by the Advanced Research Projects Agency (ARPA) under
Grant MDA972-92-J-1028, and in part by NSF institutional infrastructure grant CDA-8722788.
The content of this article does not necessarily reflect the position of the U. S. Government.
Authors’ addresses: T. A. Wagner, Borland, Inc., 951 Mariner’s Island Blvd., Suite 120, San Ma-
teo, CA 94404; email: twagner@cs.berkeley.edu; http://http.cs.berkeley.edu/̃ twagner; S. L. Gra-
ham, 771 Soda Hall, Dept. of Electrical Engineering and Computer Science, Computer Sci-
ence Division, University of California, Berkeley, CA 94720; email: graham@cs.berkeley.edu;
http://http.cs.berkeley.edu/̃ graham.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c 1998 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998, Pages ??–??.

2 � Tim A. Wagner and Susan L. Graham

mental parsers retain the document’s structure, in the form of its parse tree,
and use this data structure to update the parse after changes have been made
by the user or by other tools [Ghezzi and Mandrioli 1980; Wegman 1980; Jalili
and Gallier 1982; Ballance et al. 1988; Larchevêque 1995]. Although the topic
of incremental parsing has been treated previously, no published algorithms
are completely adequate, and most are inefficient in time, space, or both. Sev-
eral are incorrect or overly restrictive in the class of grammars to which they
apply. The central requirement for actual incremental behavior—balancing of
lengthy sequences—has been ignored in all previous approaches.1 Our incre-
mental parser is thus the first to improve on batch performance while reusing
existing grammars.

Our incremental parsing algorithm runs in O(t + s lg N) time for t new ter-
minal symbols and s modification sites in a tree containing N nodes. Perfor-
mance is determined primarily by the number and scope of the modifications
since the previous application of the parsing algorithm. Unlike many published
algorithms for incremental parsing, the location of the changes does not affect
the running time, and the algorithm supports multiple edit sites, which may in-
clude any combination of textual and structural updates. The technique applies
to any LR-based approach; our implementation uses bison [Corbett 1992] and
existing grammars to produce table-driven incremental parsers for any lan-
guage whose syntax is LALR(1).

The parsing algorithm has no additional space cost over that intrinsic to stor-
ing the parse tree. The algorithm’s only requirements are that the parent, chil-
dren, and associated grammar production of each node be accessible in con-
stant time. No state information, parse stack links, or terminal symbol links
are recorded in tree nodes. A transient stack is required during the application
of the parsing algorithm, but it is not part of the persistent data structure.2

Our presentation assumes that a complete versioning system exists, since this
is necessary in any production environment.

Many parser generators accept ambiguous grammars in combination with
additional specifications (e.g., operator precedence and default conflict resolu-
tion rules).3 These techniques provide notational convenience and often re-
sult in significantly smaller parse trees, especially in languages like C that are
terse and expression dense. We provide new results that allow incremental
sentential-form parsing to accommodate ambiguity of this form, preserving
both the notational benefits to the grammar and the space-saving properties
of the resulting compact trees.

Incremental software development environments (ISDEs) use incremental

1Gafter [1990] is the notable exception, but his approach precludes possibly empty sequences,
which occur frequently in programming language grammars.
2In most systems, nodes will already carry runtime type information. Thus, no additional space
is typically required to encode the production represented by a node. In the absence of the history
services we describe, two bits per node are needed to track changes made between applications of
the parser, and the old value of each structural link must remain accessible until the completion of
parsing.
3This is essentially a form of parse forest filtering [Klint and Visser 1994] that can be statically
encoded so that the parser remains deterministic.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 3

parsing not just for interactive speed, but because the retained data structure
is important in its own right as a shared representation used by analysis, pre-
sentation, and editing tools. In this setting, the demands placed on the incre-
mental parsing algorithm involve more than just improved performance rel-
ative to batch systems. It should also provide intelligent node reuse: when
a structural component (such as a statement) is conceptually retained across
editing operations, the parser should not discard and recreate the node repre-
senting that component. With intelligent reuse, changes match the user’s in-
tuition; the size of the development record is decreased; and the performance
of further analyses (such as semantics) improves.

Our incremental parsing algorithm is capable of retaining entire subtrees be-
fore, after, and between change points; nodes on a path from the root of the
parse tree to a modification site are also reused when doing so is correct and
intuitive for the user. Retaining these nodes is especially important, since they
represent the structural elements (functions, modules, classes) most likely to
contain significant numbers of irreproducible user annotations and automated
annotations that are time-consuming to restore (such as profile data).

No previously published work correctly describes optimal reuse in the con-
text of arbitrary structural and textual modifications. We present a new for-
mulation of this concept that is independent of the operation of the parsing al-
gorithm and is not limited by the complexity, location, or number of changes.
In common cases, such as changing an identifier spelling, our parser makes no
modifications to the parse tree. Our reuse technique is also simpler and faster
than previous approaches, requiring no additional asymptotic time and negli-
gible real time to compute.

The rest of this article is organized as follows. Section 2 compares previous
work on incremental parsing to our requirements and results; it is not needed
to understand the material that follows. The program representation and edit-
ing model are summarized in Section 3. Section 4 introduces sentential-form
parsing and presents an incremental parsing algorithm that uses existing table
construction routines. These results are extended in the next section, which
develops an optimal implementation of incremental parsing. Support for am-
biguous grammars in combination with conflict resolution schemes is covered
in Section 6. Section 7 addresses the representation and handling of repeti-
tive constructs (sequences) and constructs a model of incremental performance
to permit meaningful comparison to batch parsing and other incremental algo-
rithms. Section 8 develops the theory of optimal node reuse and discusses how
reuse computation can be performed in tandem with incremental parsing us-
ing the history mechanisms of Section 3. A history-sensitive approach to error
recovery has been described separately [Wagner 1997].

2. RELATED WORK

Several early approaches to incremental parsing use data structures other than
a persistent parse tree to achieve incrementality [Agrawal and Detro 1983; Yeh
and Kastens 1988]. While these algorithms decrease the time required to parse
a program after a change has been made to its text, they do not materialize the
persistent syntax tree required in most applications of incremental parsing.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

4 � Tim A. Wagner and Susan L. Graham

Some incremental parsing algorithms restrict the user to single-site edit-
ing [Reps and Teitelbaum 1989] or to editing of only a select set of syntactic
categories [Degano et al. 1988], or can only parse up to the current (single) cur-
sor point [Shilling 1992]. Our goal was to provide an unrestricted editing model
that permits mixed textual and structural editing at any number of points (in-
cluding erroneous edits of indefinite extent and scope) and to analyze the entire
program, not merely a prefix or syntactic fragment.

A description of incremental LR(0) parsing suitable for multiple (textual) edit
sites was presented by Ghezzi and Mandrioli [1980]. Their algorithm has sev-
eral desirable characteristics, but its restriction to LR(0) grammars limits its
applicability. LL(1) grammars are more practical (having been used in the def-
initions of several programming languages), and techniques have been devel-
oped for incremental top-down parsing using this grammar class [Murching
et al. 1990; Beetem and Beetem 1991; Shilling 1992]. Li [1995a] describes a
sentential-form LL(1) parser that can accommodate multiple edit sites.

Jalili and Gallier [1982] were the first to provide an incremental parsing al-
gorithm suitable for LR(1) grammars and multiple edit sites and based on a
persistent parse tree representation. The algorithm associates parse states
with tree nodes, computing the reusability of previous subtrees using state
matching.4 This test is sufficient but not necessary, decreasing performance
and requiring additional work to compute optimal reuse. (The effect is espe-
cially severe for LR(1) grammars, due to their large number of distinct states
with equivalent cores.)

More recently, Larchevêque [1995] has extended to LR(k) grammars the
matching condition originally formulated by Ghezzi and Mandrioli, which al-
lows the parser to retain structural units that fully contain the modification
site. His work focuses on the indirect performance gains that accrue from node
reuse in an ISDE. But unlike the original LR(0) algorithm, this algorithm ex-
hibits linear (batch) performance in many cases. (For example, replacing the
opening bracket of a function definition requires reparsing the entire function
body from scratch). The definition of node reuse provided does not describe
all opportunities for reuse and cannot be considered truly optimal. (It is also
linked to the operational semantics of the particular parsing algorithm.) The
history mechanisms we define subsume the mark/dispose operations described
by Larchevêque.

Petrone [1995] recognizes that explicit states need not be stored in nodes of
the parse tree. However, his parsing theory is unnecessarily restrictive; it re-
quires the grammar to be in LR(k)\RL(h) for incremental behavior. Grammars
outside this class require batch parsing to the right of the first edit in each re-
gion (as defined by a matching condition similar to Larchevêque). Node reuse
is a subset of that discovered by Larchevêque’s algorithm.

Yang [1994] recognizes the utility of sentential-form parsing, but still records
parse states in nodes and thus requires a post-pass to relabel subtrees. Li
[1995b] describes a sentential-form parser, but his algorithm can generate in-
correct parse errors on grammars with �-rules. (It is also limited to com-

4Section 4 reviews state matching.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 5

plete LR(1) parse tables, since invalid reductions can induce cycling in his al-
gorithm.) Both of these authors suggest “improving” the parsing algorithm
through matching condition checks that actually impede performance and re-
quire additional space to store the state information in each node.

None of these approaches is ideal. Those that work for unrestricted LR(1)
grammars all require additional space in every node of the parse tree (for exam-
ple, Larchevêque [1995] requires five extra fields per node). Only Degano et al.
[1988] address the problem of mixed textual and structural editing, but they
then impose a restricted editing framework and require novel table construc-
tion techniques. The algorithms that employ matching conditions fail to reuse
nodes that overlap modification sites. Existing reuse definitions are sub-opti-
mal and tied to the details of particular parsing algorithms. No sentential-form
algorithms support ambiguous grammars.

Our approach addresses all these concerns. Our incremental parsing algo-
rithm is based on a simple idea: that a sentential-form LR(1) parser, aug-
mented with reuse computation, can integrate arbitrary textual and structural
changes in an efficient and correct manner. Our results are easily extended
to enforce any of the restrictions of previous systems, including top-down ex-
pansion of correct programs using placeholders, restricting structural editing
to correct transformations, and limiting text editing to a subset of nontermi-
nals that must retain their syntactic roles across changes. The technique is
suitable for LR(1), LALR(1), SLR(1), and similar grammar classes, and works
correctly in the presence of �-rules. The theory extends naturally to LR(k) gram-
mars, although we do not address the general case in the proofs presented here.
Existing table construction methods (such as the popular Unix tools yacc and
bison) may be used with very little change. The technique uses less time and
space and offers more intrinsic subtree reuse than previous approaches. (Its
nonterminal shift check is both necessary and sufficient.) Finally, our approach
is designed to provide a complete incremental parsing solution: it incorporates
a balanced representation of sequences, supports ambiguous grammars and
static parse forest filters, and provides provably optimal node reuse.

3. EDITING MODEL AND CHANGE REPORTING

This section reviews our representation of structured documents and a model
for editing and transforming them. The object-based versioning services de-
scribed here provide the incremental parser (and other tools in the environ-
ment) with the means both to locate and record modifications. The same inter-
face used to undo textual and structural edits can be used to undo the effects
of any transformation, including incremental parsing. The representation is
based on the self-versioning document model of Wagner and Graham [1997].

3.1 Representation

The algorithms described in this article have been embedded in a C++ imple-
mentation of the Ensemble system developed at Berkeley. Ensemble is both a
software development environment and a structured document processing sys-
tem. Its role as a structured document system requires support for dynamic
presentations, multimedia components in documents, and high-quality render-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

6 � Tim A. Wagner and Susan L. Graham

ing. The need to support software necessitates a sophisticated treatment of
structure: fast traversal methods, automated generation mixed with explicit
(direct) editing of both structure and text, and support for complex incremental
transformations [Maverick 1997; Wagner 1997].

Although the Ensemble document model supports attributed graphs, in this
discussion we will restrict our attention to tree-structured documents, focus-
ing primarily on the text and structure associated with programs. Each doc-
ument tree is associated with an instance of a language object. In the case
of programs, this object represents the programming language and contains
the grammar and an appropriate specialization of the analysis/transformation
tools. The tree’s structure corresponds to the concrete or abstract syntax of the
programming language; the leaves represent tokens. Tree nodes are instances
of strongly typed C++ classes representing productions in the grammar. These
classes are automatically generated when the language description (including
the grammar) is processed off-line. Semantic analysis and other tools extend
the base class for each production to add their own attributes as slots [Hedin
1992; Maddox 1997].

3.2 Editing Model

We permit an unrestricted editing model: the user can edit any component, in
any representation, at any time. These changes typically introduce inconsis-
tencies among the program’s components. The frequency and timing of consis-
tency restoration is a policy decision: in Ensemble, incremental lexing, pars-
ing, and semantic analysis are performed when requested by the user, which is
usually quite frequently but not after every keystroke.5 Between incremental
parses, the user can perform an unlimited number of mixed textual and struc-
tural edits, in any order, at any point in the program.6 The performance of the
tools, including the incremental parser, is not adversely affected by the location
of the edit sites—changes to the beginning, middle, or end of the program are
integrated equally quickly.

Our approach handles all transformations, both user changes and those ap-
plied by tools such as incremental parsing, in a uniform fashion. Among other
benefits, this allows the user to use existing undo/redo commands to return to
any state of the program. This uniform treatment is critical to providing a ra-
tional user interface and requires no additional effort in the implementation of
the incremental parser—its effects are captured in the same development his-
tory that records all program modifications.

5This policy reflects experience showing that (1) reanalysis after every keystroke is unnecessary
for adequate performance and (2) the (typically invalid) results would be distracting if presented
to the user [Van De Vanter et al. 1992].
6There are no restrictions on structural updates save that a node’s type remain fixed and that the
resulting structure remain a tree. Structural changes not compatible with the grammar are permit-
ted; special error nodes are introduced as necessary to accommodate such changes. Textual modi-
fications are represented as local changes to the terminal symbol containing the edit point.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 7

3.3 Program Versions and Change Reporting

An ISDE includes a variety of tools for analyzing and transforming programs.
Some tools must be applied in a strict order—for example, semantic analysis
cannot be applied until incremental lexing and parsing have restored consis-
tency between the text and structure of a program component. Simple editing
operations can also be viewed as transformations, a perspective that is partic-
ularly useful when discussing change reporting, the means by which tools con-
vey to each other, via the history services, which portion of a program has been
changed.

Modifications to the program are initially applied by the user, either directly
or through the actions of one or more tools. The completion of a logical sequence
of actions is indicated by a commit step; once committed, the contents of a ver-
sion are read-only and are treated as a single, atomic action when changing ver-
sions. All versions are named, allowing tools to readily identify any accessible
state of the program.

History (versioning) services provide the correspondence between names of
versions and values. Their primary responsibility is to maintain the develop-
ment log, retaining access to “old” information. Updates to persistent informa-
tion are routed through the history service, with the current value of versioned
data always cached for optimum performance.

The history services also provide a uniform way for tools to locate modifica-
tions efficiently. This service is fully general, in that any tool can examine the
regions altered between any two versions. Changes can be examined not just at
the level of the entire program, but also in a distributed fashion for every node
and subtree. This generality is achieved by having each node maintain its own
edit history [Wagner and Graham 1997].

Change reporting is the protocol by which tools discover the modifications
of interest to them. Change reporting is mediated by the history service;
tools record changes as a side effect of transforming the program and dis-
cover changes when they perform an analysis. The history service provides
two boolean attributes for each node to distinguish between local and nested
changes. Local changes are modifications that have been applied directly to a
node. For terminal symbols, a local change is usually caused by an operation
on the external representation of the symbol. (In the case of programs, local
changes usually indicate a textual edit.) Structural editing normally causes lo-
cal changes to internal nodes. Nested changes indicate paths to altered regions
of the tree. A node possesses this attribute if and only if it lies on the path be-
tween the root and at least one locally modified node other than itself. Local
changes are simply a derived view on the local history log, but nested change
annotations must be incrementally computed as synthesized attributes (and
must themselves be versioned). Figure 1 summarizes the node-level history in-
terface needed by incremental parsing and node reuse.

Incremental parsing involves three distinct versions of the program:

Reference: A version of the program that represents a parsed state. Any ver-
sion that concluded with a parse operation may be used; our pro-
totype selects the most recently parsed version as the reference for

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

8 � Tim A. Wagner and Susan L. Graham

bool has_changes([local|nested]).
bool has_changes(version_id, [local|nested]).

These routines permit clients to discover changes to a single node or to traverse an en-
tire (sub)tree, visiting only the changed areas. When no version is provided, the query
refers to the current version. The optional argument restricts the query to only local or
only nested changes.

node child(i).
node child(i, version_id).

These methods return the ith child. With a single argument, the current (cached) ver-
sion is used. Similar pairs of methods exist for each versioned attribute of the node:
parent, annotations, versioned semantic data, etc.

void set_child(node, i).
Sets the ith child to node. Because the children are versioned, this method automat-
ically records the change with the history log. Similar methods exist to update each
versioned attribute.

bool exists([version_id]).
Determines whether the node exists in the current or a specified version.

bool is_new().
Determines if a node was created in the current version.

Fig. 1. Summary of node-level interface used by the incremental parser. Each node maintains its
own version history, and is capable of reporting both local changes to its attributes and “nested”
changes—modifications within the subtree rooted at the node. The version_id arguments refer
to the document as a whole; they are efficiently translated into names for values in the local history
of each versioned attribute.

Fig. 2. The relationship between the three permanent sentinel nodes
and the parse tree structure. Two permanent tokens bracket the termi-
nal yield of the parse tree, while a third sentinel (the UltraRoot) points
to both of these tokens as well as the (current) root of the parse tree. The
sentinel nodes do not change from one version to the next.

bos eos

token stream

tree

UltraRoot

the subsequent parse. Exception: an initial parse of a newly entered
program has no reference version, since it represents a batch sce-
nario.

Previous: The state of the program immediately prior to the start of parsing.
This is the version read by the parser to provide its input stream.
(The modifications accrued between the reference version and the
previous version determine which subtrees are available for poten-
tial reuse.)

Current: The version being written (constructed) by the parser.

Tools in the ISDE, including the incremental parser, use permanent sentinel
nodes to locate starting points in the mutable tree structure. Three sentinel
nodes, shown in Figure 2, are used to mark the beginning and end of the token
stream and the root of the tree.

To create a new program, a null tree corresponding to only the sentinels in

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 9

Figure 2 and a completing production for the start symbol of the grammar is
constructed. The initial program text is assigned temporarily as the lexeme of
bos. Then a (batch) analysis is performed, which constructs the initial version
of the persistent program structure; all subsequent structure is derived solely
through the incorporation of valid modifications by the parser and other tools.

4. INCREMENTAL PARSING OF SENTENTIAL FORMS

Our incremental parsing algorithm utilizes a persistent parse tree and detailed
change information to restrict both the time required to reparse and the regions
of the tree that are affected. The input to the parser consists of both terminal
and nonterminal symbols; the latter are a natural representation of the un-
modified subtrees from the reference version of the parse tree. We begin by
discussing tests for subtree reuse, then present a simplified algorithm for in-
cremental parsing that introduces the basic concepts. Section 5 extends these
results to achieve optimal incrementality; subsequent sections discuss repre-
sentation issues and additional functionality.

4.1 Subtree Reuse

Many previous algorithms for incremental parsing of LR(k) or LALR(k) gram-
mars have relied on state matching, which incrementalizes the push-down au-
tomata of the parser. The configuration of the machine is summarized by the
current parse state, and each node in the parse tree records this state when it
is shifted onto the stack. To test an unmodified subtree for reuse at a later time,
the state recorded at its root is compared to the machine’s current state. If they
match, and any required lookahead items are valid, then the parser can shift
the subtree without inspecting its contents. Testing the validity of the look-
ahead is usually accomplished through a conservative check: the k terminal
symbols following the subtree on the previous parse are required to follow it in
the new version as well.

One disadvantage of state matching is the space associated with storing
states in tree nodes. State matching also restricts the set of contexts in which
a subtree is considered valid, since the state-matching test is sufficient but not
necessary. The overly restrictive test is particularly limiting with LR(1) parse
tables, as opposed to LALR(1), because the large number of similar distinct
states (i.e., distinct item sets with identical cores) practically guarantees that
legal syntactic edits will not have valid state matches. The failure to match
states for a subtree in a grammatically correct context causes a state-matching
incremental parser to discard the subtree and rebuild an isomorphic one la-
beled with different state numbers. LALR(1) parsers fare better with state-
matching algorithms because a greater proportion of modifications permit the
test to succeed.

Sentential-form parsing is a strictly more powerful technique than state
matching for deterministic grammars, capturing more of the “intrinsic” incre-
mentality of the problem. For LR(0) parsers, the mere fact that the grammar
symbol associated with a subtree’s root node can be shifted in the current parse
state indicates that the entire subtree can be incorporated without further anal-
ysis. The situation is similar, though more complex, for the LR(1) case. Stated

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

10 � Tim A. Wagner and Susan L. Graham

Right (subtree reuse) Stack

R
nested changes
reuse candidate

acd
^b

Left (parse) Stack

R

R

R

R

R

TOS

lookahead

local changes

Fig. 3. Incremental parsing example. This figure illustrates a common case: a change in the
spelling of an identifier results in a “split” of the tree from the root to the token containing the mod-
ified text. The shaded region to the left becomes the initial contents of the parse stack, which is in-
stantiated as a separate data structure because it contains a mixture of old and new subtrees. The
shaded region to the right provides the potentially reusable portion of the parser’s input stream.
This stack is not explicitly materialized—its contents are derived by a traversal of the parse tree as
it existed immediately prior to reparsing. Except when new text is being scanned, the top element
of the right stack serves as the parser’s lookahead symbol. The remaining nodes in this figure are
all candidates for explicit reuse (Section 8). In the example shown, the tree will be “sewn up” along
the path of nested changes; the parser will not need to create any new nodes to incorporate this
change to the program.

informally, the fact that a subtree representing a nonterminal is shiftable in
the current parse state means that the entire subtree except for its right-hand
edge (the portion affected by lookahead outside the subtree) can be immediately
reused. Sentential-form parsing provides incrementality without the limita-
tions of state matching: no states are recorded in nodes; subtrees can be reused
in any grammatically correct context; and lookahead validation is accomplished
“for free” by consuming the input stream.

Like Jalili and Gallier, we conceptually “split” the tree in a series of locations
determined by the modifications since the previous parse. Modification sites
can be either interior nodes with structural changes or terminal nodes with tex-
tual changes,7 and the split points are based on the (fixed) number of lookahead
items used when constructing the parse table. The input stream to the parser
will consist of both new material (in the form of tokens provided by the incre-
mental lexer) and reused subtrees; the latter are conceptually on a stack, but
are actually produced by a directed traversal over the previous version of the
tree. An explicit stack is used to maintain the new version of the tree while it
is being built. This stack holds both symbols (nodes) and states (since they are
not recorded within the nodes). Figure 3 illustrates a common case, where a
change in identifier spelling has resulted in a split to the terminal symbol con-

7All textual and structural modifications are reflected in the tree itself. Section 3 discusses the
representation of programs and the techniques for summarizing changes.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 11

taining the modified text.
We now formalize the concept of shifting subtrees.

Notation. Let ti denote a terminal symbol and Xi an arbitrary symbol in the
(often implicit) grammar G. Greek letters denote (possibly empty) strings of
symbols in G. k denotes the size of the terminal lookahead used in constructing
the parse table. si denotes a state. Subscripts indicate left-to-right ordering.
LA(si) denotes the union of the lookahead sets for the collection of LR(1) items
represented by si. GOTO(si, X) indicates the transition on symbol X in state si.
(This is not a partial function; illegal transitions are denoted by a distinguished
error value.) We use additional terminology from Aho et al. [1986].

THEOREM 4.1.1. Consider a conventional batch LR(1) parser in the follow-
ing configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn t1t2 . . . tmtm+1 . . .

Suppose A �

) t1 . . . tm (m � 0). Note that A may derive the empty string (�).
If GOTO(sn, A) = si and tm+1 2 LA(sn), then the parser will eventually enter

the following configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn A si tm+1 . . .

PROOF. By the correctness of LR(1) parsing and the fact that X1 . . . XnAtm+1
is a viable prefix.

The results of Theorem 4.1.1 cannot be used directly: testing whether the ter-
minal symbol following a subtree is in the lookahead set for the current state is
not supported by existing parse tables, even though such information is avail-
able during table construction. Instead, we use this result in a more restricted
fashion.8

If a subtree has no internal modifications and its root symbol is shiftable
in the current parse state, then all parse operations up to and including the
shift of the final terminal symbol in the tree are predetermined, and we can
put the parser directly into that configuration, without additional knowledge
of legal lookaheads. This transition is actually accomplished by shifting the
subtree onto the parse stack, then removing (“breaking down”) its right edge
(Figure 4). The situation is complicated slightly by the possibility that one or
more subtrees with null yield may need to be removed from the top of the parse
stack as well, since they also represent reductions predicated on an uncertain
lookahead.9 Figure 5 illustrates the breakdown procedure. Its validity is es-
tablished by the following theorem, which relates the configuration (parse stack

8In Section 5 we describe a technique that involves minimal changes to table construction methods
and provides better incremental performance than terminal lookahead information could achieve.
9Right-edge breakdowns are done eagerly to avoid cycling when the parse table contains default
reductions or is not canonical (e.g., is LALR(1) instead of LR(1)) and the input is erroneous. If com-
plete LR(k) tables are used, right-edge breakdowns can be done on demand, in an analogous fashion
to the left-edge breakdown shown in Figure 7.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

12 � Tim A. Wagner and Susan L. Graham

Remove any subtrees on top of parse stack with null yield, then
break down right edge of topmost subtree.
right_breakdown () {

NODE *node;
do { Replace node with its children.
node = parse_stack!pop();
Does nothing when child is a terminal symbol.
foreach child of node do shift(child);

} while (is_nonterminal(node));
shift(node); Leave final terminal symbol on top of stack.

}

Shift a node onto the parse stack and update the current parse state.
void shift (NODE *node) {

parse_stack!push(parse_state, node);
parse_state = parse_table!state_after_shift(parse_state, node!symbol);

}

Fig. 4. Procedures used to break down the right-hand edge of the subtree on top of the parse stack.
On each iteration, node holds the current top-of-stack symbol. Any subtree with null yield appear-
ing in the top-of-stack position is removed in its entirety.

Before shift of nonterminal A:

. . . A J . . .

After shift of A:

. . . A J . . .

Part way through breakdown:

. . . BCHI J . . .

After breakdown is complete:

. . . BD J . . .

ε ε
D

A

B

C

E

F

G

I JH

t 1mt tm+1

Fig. 5. Illustration of right_breakdown. The shaded region shows the reductions “undone” by the
breakdown—all nodes representing reductions predicated on the following terminal symbol (J) are
removed. Any subtrees with null yield are discarded; then the right-hand edge of the subtree on
top of the stack is removed, leaving its final terminal symbol in the topmost stack position. (The
parse stack holds both states and nodes; only node labels are shown here.)

contents and parse state) of a batch parser to that of an incremental parser that
has shifted a nonterminal and then invoked right_breakdown.

THEOREM 4.1.2. Let A �

) t1 . . . tm, m � 1 be a production in G, and let
X1X2 . . . XnA be a viable prefix. Let B denote a (batch) LR(1) parser for the gram-
mar G in the following configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn t1t2 . . . tm . . .

Let I denote an incremental LR(1) parser for the grammar G in the following
configuration:

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 13

. . . s0X1s1X2s2 . . . sn�1Xnsn A . . .

where yield(A) = t1 . . . tn. The configuration of I following a shift of A and subse-
quent invocation of the breakdown procedure (Figure 4) is identical to the con-
figuration of B immediately after it shifts tm.

PROOF. Each iteration of the loop in right_breakdown leaves a viable pre-
fix on I’s stack. At the conclusion of the routine, tm will be the top element.
Since the parse tree for the derivation of A is unique, I’s final stack configura-
tion must match that of B; the equivalence of the parse states follows.

4.2 An Incremental Parsing Algorithm

We now use Theorem 4.1.2 to construct an incremental parser. Pseudocode for
this algorithm is shown in Figure 6.

The algorithm in Figure 6 represents a simple “conservative” style of incre-
mental parsing very similar to a state-matching algorithm. The input stream
is a mixture of old subtrees (from the previous version of the parse tree) that
is constructed on the fly by traversing the previous tree structure using the
local/nested change information described in Section 3. The parse stack con-
tains both states and subtrees and is discarded when parsing is complete. In-
cremental lexing can either be performed in a separate pass prior to parsing or,
as shown here, in a demand-driven way as the incremental parser encounters
tokens that may be inconsistent. We assume that the incremental lexer resets
the lookahead (la) to point to the next old subtree when it completes relexing
of a contiguous section.

Reductions occur as in a conventional batch parser, using a terminal looka-
head symbol to index the parse table. Shifts, however, may be performed us-
ing nontrivial subtrees representing nonterminals. Unlike state matching, the
shift test is not only sufficient but also necessary: a valid shift is determined
based on the grammar, not the relationship between two configurations of the
parse stack.

Subtrees that cannot be shifted are broken down, one level at a time, as
if they contained a modification. After a nontrivial subtree is shifted, all re-
ductions predicated on the next terminal symbol are removed by a call to
right_breakdown. (These reductions are often valid, in which case the dis-
carded structure will be immediately reconstructed. In the following section
we eliminate this and other sources of suboptimal behavior.)

The correctness of this algorithm is based on Theorem 4.1.2, which associates
the configuration of the incremental parser immediately prior to each reduction
with a corresponding configuration in a batch parser.

Theorems 4.1.1 and 4.1.2 apply equally well to LALR(1) and SLR(1) parsers,
so the algorithm given in Figure 6 can be used for these grammar classes
and parse tables as well. The only restriction, which applies to any grammar
class, is that table construction techniques cannot use lossy compression on the
GOTO table (it cannot be rendered as a partial map). While only legal nonter-
minal shifts arise in batch parsing, as the final stage in a reduction, sentential-
form parsing needs an exact test to determine whether a given subtree in the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

14 � Tim A. Wagner and Susan L. Graham

void inc_parse () {
Initialize the parse stack to contain only bos.
parse_stack!clear(); parse_state = 0; parse_stack!push(bos);
NODE *la = pop_lookahead(bos); Set lookahead to root of tree.
while (true)
if (is_terminal(la))

Incremental lexing advances la as a side effect.
if (la!has_changes(reference_version)) relex(la);
else
switch (parse_table!action(parse_state, la!symbol)) {

case ACCEPT: if (la == eos) {
parse_stack!push(eos);
return; Stack is [bos start_symbol eos].

} else {recover(); break;}
case REDUCE r: reduce(r); break;
case SHIFT s: shift(s); la = pop_lookahead(la); break;
case ERROR: recover(); break;
}

else this is a nonterminal lookahead.
if (la!has_changes(reference_version)

la = left_breakdown(la); Split tree at changed points.
else {
Reductions can only be processed with a terminal lookahead.
perform_all_reductions_possible(next_terminal());
if (shiftable(la))

Place lookahead on parse stack with its right-hand edge removed.
{shift(la); right_breakdown(); la = pop_lookahead(la);}

else la = left_breakdown(la);
}

}

Fig. 6. An incremental parsing algorithm based on Theorem 4.1.2. The input is a series of sub-
trees representing portions of the previous parse tree intermixed with new material (generated by
invoking the incremental lexer whenever a modified token is encountered). After each nontermi-
nal shift, right_breakdown is invoked to force a reconsideration of reductions predicated on the
next terminal symbol. Nontrivial subtrees appearing in the input stream are broken down when
the symbol they represent is not a valid shift in the current state or when they contain modified
regions. next_terminal returns the earliest terminal symbol in the input stream; when the look-
ahead’s yield is not null, this will be the leftmost terminal symbol of its yield. The pop_lookahead
and left_breakdownmethods are shown in Figure 7; has_changes is a history-based query from
Figure 1. bos and eos are the token sentinels illustrated in Figure 2.

input can be legally shifted.
To establish the running time of the algorithm in Figure 6,10 suppose that

the height of a subtree containing N nodes is O(lg N). If there are s modifica-
tion sites, the previous version of the tree will be split into O(s lg N) subtrees.
Tokens resulting from newly inserted text are parsed in linear time. When the
lookahead symbol is a reused subtree, O(lg N) time is required to access its
leading terminal symbol in order to process reductions. If the subtree can be
shifted in the new context, O(lg N) time is also consumed in reconstructing its
trailing reduction sequence using right_breakdown. If we assume that each

10Section 7 discusses the model of incremental parsing and the assumptions regarding the form of
the grammar and parse tree representation.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 15

Decompose a nonterminal lookahead.
NODE *left_breakdown (NODE *la) {
if (la!arity > 0) {
NODE *result = la!child(0, previous_version);

if (is_fragile(result)) return left_breakdown(result);

return result;
} else return pop_lookahead(la);

}

Pop right stack by traversing previous tree structure.
NODE *pop_lookahead (NODE *la) {
while (la!right_sibling(previous_version) == NULL)
la = la!parent(previous_version);

NODE *result = la!right_sibling(previous_version);

if (is_fragile(result)) return left_breakdown(result);

return result;
}

Fig. 7. Using historical structure queries to update the right (input) stack in the incremental
parser. The lookahead subtree is decomposed one level for each invocation of left_breakdown,
conceptually popping the lookahead symbol and pushing its children in right-to-left order (analo-
gous to one iteration of right_breakdown’s loop). pop_lookahead advances the lookahead to the
next subtree for consideration, using the previous structure of the tree. The boxed code is used to
support ambiguous grammars (Section 6).

change has a bounded effect (results in a bounded number of additional sub-
tree breakdowns), then the combined cost of shifting a nonterminal symbol is
O(lg N). For t new tokens, this yields a total running time of O(t + s(lg N)2).

Note that there is no persistent space cost attributable solely to the incre-
mental parsing algorithm, since the syntax tree is required by the environ-
ment. The ability to shift subtrees independently of their previous parsing state
avoids the need to record state information in tree nodes.

5. OPTIMAL INCREMENTAL PARSING

The previous section developed an incremental parsing algorithm that used ex-
isting information in LR (or similar) parse tables. In this section we improve
upon that result by avoiding unnecessary calls to right_breakdown and by
eliminating the requirement that only terminal symbols can be used to perform
reductions. The result is an optimal algorithm for incremental parsing, with a
running time of O(t + s lg N). (We focus primarily on the k = 1 case, but also
indicate how additional lookahead can be accommodated.)

The algorithm in Figure 6 can perform reductions only when the lookahead
symbol is a terminal; when the lookahead is a nonterminal, that algorithm
must traverse its structure to locate the leading terminal symbol. By provid-
ing slightly more information in the parsing tables however, we can use nonter-
minal lookaheads to make reduction decisions directly, eliminating one source
of the extra lg N factor without maintaining a “next terminal” pointer in each
node.

When the lookahead symbol is a nonterminal with nonnull yield that extends
the viable prefix, there is no need to access the leftmost terminal symbol of the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

16 � Tim A. Wagner and Susan L. Graham

yield in order to perform reductions: if Z can follow Y in a rightmost derivation
and Z �

) t1 . . . tm(m � k), then a reduction of a handle for Y by a batch parser
when the first k symbols of Z constitute the lookahead can be recorded in the
parse table as the action to take with the nonterminal lookahead Z.11 This
change avoids the performance cost of extracting the initial k terminals from
the subtree representing the current lookahead symbol. Only when the look-
ahead is invalid (does not extend the viable prefix) or contains modifications
must it be broken down further.

Basing reductions on nonterminal lookaheads is not itself sufficient to im-
prove the asymptotic performance results of the previous section’s algorithm;
unnecessary invocations of right_breakdown must also be eliminated. Spu-
rious reconstructions can be avoided by parsing optimistically: the parser omits
the call to right_breakdown after shifting a subtree and performs reductions
even when the lookahead contains fewer than k terminal symbols in its yield.
When such actions turn out to be correct, unnecessary work has been avoided.
If one or more actions were incorrect, the problem will be discovered before k
terminal symbols past the point of the invalid action have been shifted. The
parser backtracks efficiently from invalid transitions; in the k = 1 case, back-
tracking is merely a delayed invocation of right_breakdown.12 Optimistic be-
havior thus improves both the asymptotic and the practical performance of the
incremental parser.

The algorithm in Figure 8 implements the optimistic strategy by a technique
similar to the trial parsing used in batch parser error recovery [Burke and
Fisher 1987]. Suppose we can legally shift a reused subtree, and, in the result-
ing state, can continue by shifting additional symbols deriving at least one ter-
minal symbol (or incorporating the end of the input). The only way this can
happen is if the first subtree was correct in its entirety, including its final re-
duction sequence. Further shifts of k terminal symbols indicate they were in
the lookahead set after shifting the initial subtree, proving that any reductions
optimistically retained (or applied based on insufficient lookahead) were indeed
valid.13 These reductions include any subtrees with null yield (�-subtree) on top
of the parse stack, as well as the right-hand edge of the topmost non-�-subtree.

With this optimistic strategy, several possibilities can exist when the look-
ahead symbol does not indicate a shift or reduce action. (Figure 9 illustrates
the sequence of events.) The parser begins by incrementally discarding struc-
ture in a nonterminal lookahead until either a valid action is indicated by the
parse table or the lookahead is a terminal symbol. At that point, if the error
persists, the algorithm uses right_breakdown to discard speculative (unver-
ified) reductions. At this point the top of the parse stack and the lookahead are
both terminal symbols. If the input is valid, the incremental parser proceeds

11The change to existing table generators is minor: the parse table must be augmented slightly
to represent all valid (and invalid) nonterminal transitions explicitly. Algorithms for constructing
parse tables for the classes of parsers described here [Aho et al. 1986] are easily modified to enu-
merate all lookahead symbols rather than terminals alone.
12If the grammar contains V nonterminals, the amount of backtracking is limited to O(kV).
13The k > 1 case is complicated by the fact that up to k� 1 terminal symbols can be shifted before
the error is discovered.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 17

void inc_parse () {
bool verifying = false;
Initialize parse stack to contain only bos.
parse_stack!clear(); parse_state = 0; parse_stack!push(bos);
NODE *la = pop_lookahead(bos); Set lookahead to first subtree following bos.
while (true)
if (is_terminal(la))

if (la!has_changes(reference_version)) relex(la);
else

switch (parse_table!action(parse_state, la!symbol)) {
case ACCEPT: if (la == eos) {

push(eos); return; Stack is [bos start_symbol eos].
} else {recover(); break;}

case REDUCE r: verifying = false; reduce(r); break;

case SHIFT s: verifying = false; shift(la);
la = pop_lookahead(la); break;

case ERROR: if (verifying) {
right_breakdown(); Delayed breakdown.
verifying = false;

}
else recover(); Actual parse error.

}
else this is a nonterminal lookahead.

if (la!has_changes(reference_version))
la = left_breakdown(la); Split to changed point.

else
switch (parse_table!action(parse_state, la!symbol)) {

case REDUCE r: if (yield(la) > 1) verifying = false;

reduce(r); break;
case SHIFT s: verifying = true; shift(la);

la = pop_lookahead(la); break;
case ERROR: if (la!arity > 0) la = left_breakdown(la);

else la = pop_lookahead(la);
}

}

Fig. 8. An improved incremental parsing algorithm. Its correctness is expressed by Theorem 5.1.1.
It works on any LR(1) or LALR(1) table in which the set of nonterminal transitions is both com-
plete and correct. The boxed statements are included only when canonical LR(k) tables are used;
they improve performance slightly by also validating reductions when the lookahead symbol is not
an �-subtree. Since all parsing classes we consider have the viable prefix property, the ability to
shift any non-�-subtree automatically validates any speculative reductions, including speculatively
shifted �-subtrees. If a real parse error occurs, the algorithm invokes recover() in the same con-
figuration in which a batch parser would initiate recovery of the error.

to shift it after zero or more (valid) reductions.
In the event of an actual parse error, the algorithm of Figure 8 invokes er-

ror handling in exactly the same configuration where a batch parser would dis-
cover the error. For canonical tables, this configuration will have a terminal
symbol on the top of the parse stack and in the lookahead position. For other
classes of parsers, one or more invalid reductions may be performed before the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

18 � Tim A. Wagner and Susan L. Graham

I

H

G

B

C

A

D E

F K

J

ED

C F

I

G

H

K

J

a. Discarding left edge of right stack. b. Discarding right edge of left stack.

Fig. 9. The situation when an error is detected. The first course of action is to progressively tra-
verse the left edge of the subtree being considered for reuse (a). This action is the counterpart to
right_breakdown, except that it is implemented incrementally simply by changing the lookahead
item on top of the right stack. If an error persists with a terminal symbol in the lookahead posi-
tion, then right_breakdown is used to ensure that the topmost element of the parse stack is also
a terminal symbol. If the input is correct, parsing will continue as usual from this point. In the
event an actual parse error exists, one or more invalid reductions will typically be (re)performed
at this point unless the parse tables are canonical. In any event, the error will be detected before
any further terminal symbols are shifted, and error recovery will be initiated in exactly the same
configuration as in a batch parser.

error is detected.14 (When this happens, note that setting verifying to false
is essential to prevent the incremental parser from cycling. Otherwise the in-
valid reductions would be reapplied, only to be followed once again by a call of
right_breakdown.)

When using canonical LR(1) tables, reductions based on a non-�-subtree look-
ahead can be used to validate speculative reductions. Lossy compression of
the terminal reduction actions and the invalid reductions permitted by other
parser classes (LALR(1), SLR(1)) limit validation to shifts of non-�-subtrees.15

However, if an LALR or SLR parser generator identifies reductions guaranteed
never to be erroneous, reduction validation can be employed on a case-by-case
basis.

The flow of control in Figure 8 is similar to that of the previous algorithm,
except for the two optimizations defined above. In simple cases, such as the
example illustrated in Figure 3, each subtree appearing in the input stream is
shifted with no breakdowns except for those required to expose the modification
sites. The conservative invocation of right_breakdown after each nontermi-
nal shift has been replaced by the ERROR cases, which use right_breakdown
to implement backtracking. The ability to reduce on a nonterminal lookahead
results in a new REDUCE case that is identical to its terminal counterpart.

5.1 Correctness

We now demonstrate that the parse tree produced by the algorithm in Figure 8
is the same as the parse tree resulting from a batch parse using an identical

14Replacing error entries in the terminal transition portion of a canonical parse table with reduc-
tions has the same effect.
15All the parsing classes we consider here retain the viable prefix property when k = 1, which
ensures that a shift of a non-�-subtree is possible only if the preceding reduction sequence was valid.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 19

parse table, thus establishing correctness in the k = 1 case.16

First, we justify the optimized shifting strategy. Recall that Theorem 4.1.1
does not apply to the set of reductions removed by right_breakdown. But if
the parser can continue by shifting (or, in the case of a canonical parse table,
reducing) using a non-�-subtree lookahead, then clearly the configuration im-
mediately after the shift represented a valid prefix of a rightmost derivation,
and thus the use of right_breakdown was unnecessary. Since the lookahead
is known to be valid, Theorem 4.1.2 ensures that the configuration of the batch
and incremental parsers are identical after the shift operation, even without
the breakdown procedure.

Second, consider making parsing actions on the basis of a lookahead symbol
represented by an �-subtree in the input stream. Since the length of the termi-
nal yield of the lookahead is less than k, any decisions based on it are potentially
invalid. Three cases can arise:

—In the case of an error, left_breakdown(la) is invoked. Eventually either
a non-�-subtree lookahead is reached, or one of the cases below applies.

—In the case of a REDUCE action, a new node is created without advancing the
lookahead.

—In the case of a SHIFT action, the �-subtree is pushed onto the parse stack.
(This is equivalent to the application of one or more reductions.)

Shifting or reducing based on an �-subtree lookahead merely adds to the set
of pending reductions. No subsequent shift of a non-�-subtree can occur unless
it extends a viable prefix; if any of the reductions are invalid, an eventual call
to right_breakdownwill remove the entire reduction sequence and apply the
correct set of reductions using the following terminal symbol.

We can now establish that the configuration of this parser is identical to that
of a batch parser at a number of well-defined match points.

THEOREM 5.1.1. The configuration of the incremental parser defined by the
algorithm in Figure 8 matches that of a batch parser using the same parse table
information in the following cases:

(1) At the beginning of the parse, with an empty stack and the lookahead set
to bos.

(2) At the end of the parse, when the accept routine is invoked.
(3) When an error is detected (and the recover routine is invoked).
(4) Immediately prior to a shift of any non-�-subtree by the incremental parser.

PROOF SKETCH. Equality clearly holds in the first case. Case (2) can be
modeled as a special case of (4) by treating it as a “shift” of one or more end-of-
stream (eos) symbols in order to reduce to the start symbol of an augmented
grammar. The argument for (3) has already been presented. Case (4) relies on
the argument for optimized shifting in conjunction with backtracking as pre-
sented above, observing that the incremental parser has performed all possible
reductions when a shift is about to occur.

16The general case is similar, but bookkeeping in the proof, as in the algorithm, is more complex
due to the need to backtrack after shifting a non-�-subtree.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

20 � Tim A. Wagner and Susan L. Graham

COROLLARY 5.1.2. The incremental parsing algorithm of Figure 8 produces
the same parse tree constructed by a batch parser reading the same terminal
yield.

5.2 Optimality

We now investigate the claim that the algorithm in Figure 8 (algorithm A) is
optimal with respect to a general model of incremental shift/reduce parsing.
We do this by establishing that no other algorithm A0 of this form can improve
asymptotically on the total number of steps, independent of the grammar and
edit sequence. First, assume the following as input:

—A sequence of reused subtrees and new tokens; the reused subtrees are pro-
vided by a traversal of the changed regions of the previous version of the tree.

—A parse table for a grammar G, in which nonterminal transitions are both
complete and correct.

We use the conventional model of shift/reduce parsing, augmented with the
ability to shift nonterminals in the form of nontrivial subtrees retained from
the previous version of the tree. A node may be reused in the new version of
the tree if its child nodes are identical in both trees. (Section 8 explores models
of node reuse in greater detail.) The cost model charges O(1) time for each node
visited or constructed.

As stated previously, our version of sentential-form parsing uses a subtree
shift test that is both necessary and sufficient. It follows immediately that no
other parsing algorithm can perform fewer shifts.

To understand why the number of reductions is asymptotically optimal, we
first consider a restricted case: LR(1) parse tables in which the terminal ac-
tion transitions are also complete (i.e., no use of “default reductions”). We also
make a straightforward replacement of the right_breakdown routine in Fig-
ure 4 with one that operates in a stepwise fashion. Now assume some other
algorithm A0 avoids a reduction that our algorithm performs. Since the reduc-
tion can be avoided by A0, it must reuse a node N to represent the same re-
duction in both trees. If N was marked with nested changes prior to parsing,
then the cost of the extra reduction is asymptotically subsumed by the traver-
sal needed to generate the input to the algorithm. Otherwise N was broken
down by left_breakdownunnecessarily in order to trigger one or more calls to
right_breakdown. But the order in which reductions are reconsidered when
two nontrivial subtrees adjacent in the input stream cannot be adjacent in the
new tree is arbitrary: without additional knowledge, no algorithm can choose
an optimal order for these tests a priori. Thus some different combination of
grammar and edit sequence must result in A0 requiring more reductions than
our algorithm.

Now suppose a parser class that permits erroneous reductions and/or lossy
compression of terminal reduction actions in the parse table, along with the
version of right_breakdown shown in Figure 4. In this case, a reduction
performed by A0 and not by our algorithm may also be due to the fact that
right_breakdown removes a reduction unnecessarily. (Recall that this rou-
tine must assure a configuration in which a terminal symbol is on top of the
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 21

parse stack in order to avoid cycling in the presence of erroneous reductions.)
First, suppose A0 predicates a node’s reusability (in part) on the lookahead

symbol, as is done in state-matching approaches. Since the two subtrees in
question were not necessarily adjacent in the previous version of the parse tree,
we can easily exhibit grammars and edit sequences in which A0 performs more
reductions than A by arranging for the following terminal symbol to be different
than in the previous parse tree.

Now suppose A0 does not predicate reusability on the lookahead symbol. To
avoid configurations in which A invokes right_breakdown, A0 must either
shift suboptimally or remove reductions unnecessarily in some circumstances.
If A0 does enter such a configuration, then to avoid cycling it must remove all
reductions dependent upon the lookahead symbol(s), exactly as A does.

6. AMBIGUOUS GRAMMARS AND PARSE FOREST FILTERING

Ambiguous grammars frequently have important advantages over their unam-
biguous counterparts: they are shorter and simpler and result in faster parsers,
smaller parse trees, and easier maintenance. Many parser generator tools,
such as bison, permit some forms of ambiguity in conjunction with mecha-
nisms for eliminating the resulting nondeterminism in the parse table.17 These
methods include default resolution mechanisms (prefer shift, prefer earliest re-
duction in order of appearance in grammar) as well as a notation for expressing
operator precedence and associativity [Aho et al. 1975].18

Resolving the conflicts in the parse table through additional information (in-
cluding default mechanisms built into the parser generator) interferes with
sentential-form parsing, which assumes that the parse table reflects the gram-
mar of the language. In particular, transitions on nonterminal lookaheads that
appear to be valid may result in a parse tree that would not be produced by a
batch parser.

Figure 10 illustrates one such problem. A text edit converting addition to
multiplication should trigger a restructuring to accommodate the higher prece-
dence of the new operator. However, the grammar is ambiguous, and a straight-
forward implementation of incremental sentential-form parsing produces the
wrong parse tree. This situation occurs because conflict resolution encoded in
the parse table is not available when the lookahead symbol is a nonterminal.

Incremental parsing methods based on state matching do not have this prob-
lem, because their incrementality derives from re-creating configurations in
the pushdown automaton itself. With respect to unambiguous grammars, state
matching is a sufficient but not necessary test. In the case of ambiguous gram-
mars, however, the stronger state-matching test is useful: treating the parse

17The methods we describe in this section also apply to unambiguous grammars that are nondeter-
ministic (with respect to a particular parsing algorithm) in the absence of conflict resolution during
parse table construction.
18These resolution methods are the most widely used, but have several theoretical disadvan-
tages, including the fact that they may result in incomplete or even nonterminating parsers.
Thorup [1994] examines methods that eliminate conflicts while preserving the completeness, ter-
mination, and performance results of classic LR parsers. Klint and Visser [1994] describe parse
tree filters, some of which can be applied at parse table construction time.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

22 � Tim A. Wagner and Susan L. Graham

%token IDENT
Order indicates precedence:
%left ’+’ low
%left ’*’ high
%%
s : e;
e : IDENT

| e ’+’ e
| e ’*’ e
| ’(’ e ’)’
;

e

e

e e e

a b c+ +

*

a. Bison input file. b. Original program with edit site
marked.

e

e

e e e

a + c*b

e

e

a + b * c

e ee

c. Incorrect parse due to ambiguity;
the reused subtree is shaded.

d. Correct parse due to additional
breakdowns.

Fig. 10. Incremental parsing in the presence of ambiguity. The grammar in (a) would be ambiguous
without the precedence/associativity declarations, which control how the parser generator resolves
conflicts. As shown in (c), a sentential-form parser produces the wrong parse tree, since its test
for subtree reuse does not take conflict resolution into account (unlike state-matching methods).
Forcing the parser to break down fragile productions when they occur as lookaheads will result in
correctly parsed structure (d).

table as definitive permits the incremental parser to ignore the relationship be-
tween the parse table and the grammar. State matching thus intrinsically sup-
ports any (static) conflict resolution mechanism. Since most existing and future
grammars are likely to be ambiguous, incremental sentential-form parsers will
only be practical if they can also support this type of ambiguity.

One possible solution would be to encode the dynamic selection of desired
parse trees in the incremental parsing algorithm itself. For example, an ex-
isting theory of operators [Aasa 1995] could be extended to produce an incre-
mental evaluator by maintaining synthesized attributes that describe, for each
expression subtree, the precedence and associativity of the “exposed” operators
within it. The incremental parser would expose operands through additional
left- and right-breakdown operations in accordance with the operator specifi-
cations. This technique would be limited to the class of ambiguities addressed
by the operator notation.

6.1 Encapsulating Ambiguity

A second, more general, solution is to employ the less efficient state-matching
implementation on a restricted basis, limiting it to just those portions of the
parse tree involving ambiguous constructs. In ambiguous regions, the parser

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 23

uses state matching to determine the set of reusable subtrees; in unambiguous
regions, sentential-form parsing can be used. State matching is required when
the current state (item set) contains a conflict or when the lookahead symbol is
a node constructed using state matching (a fragile node). Both conditions signal
the parser to switch to the more conservative subtree reuse test.

The set of fragile nodes is determined through a combination of grammar
analysis and dynamic (“parse-time”) tracking. First, the set of directly ambigu-
ous productions can be output by the parser generator: these are the produc-
tions that appear in any state (item set) containing a conflict, and any node rep-
resenting an instance of a production in this list is fragile. (Most parser gener-
ators already provide this information in “verbose mode”.) The analysis applies
to any framework that produces a deterministic parse table by selective elimi-
nation of conflicts, including both shift/reduce and reduce/reduce conflicts.19

Nodes can also be indirectly fragile; for example, a chain reduction of a fragile
production would likewise be fragile. This propagation stops when a number of
terminal symbols equal to the lookahead used for parsing (k) has been accumu-
lated at the beginning and end of a fragile region; in the example of Figure 10,
adding parentheses to an arithmetic expression encases the fragile region and
results in an unambiguous construct.

Indirect, or dynamic, fragility is determined by synthesizing the exposure of
conflicts along the left and right sides of a subtree, as shown in Figure 11. As
each node is shifted onto parse stack its dynamic fragility can be determined:
a node is explicitly fragile (and therefore requires a state) if either the left or
right side of its yield exposes a fragile production. Each entry in the parse stack
can be extended to include the additional information needed to track terminal
yield counts and left and right conflict exposure.20

6.2 Implementing Limited State Matching

Constructing a sentential-form parser that applies state matching to fragile
nodes is a straightforward combination of the two algorithms. However, we pre-
fer to avoid the additional space overhead of explicit state storage: instead of
applying state matching to the portions of the parse tree not correctly handled
by sentential-form parsing, these areas are simply re-created on demand. (The
“state” information on affected nodes is effectively reduced to a single boolean
value.) This approach is simple, can often be implemented with no explicit stor-
age costs whatsoever, and—given the small size of the regions affected—is very
fast in practice.

In order to implement this approach, regions of the parse tree described by
ambiguous portions of the grammar must be re-created whenever any modifi-

19Visser [1995] examines an alternative approach that instead modifies the item set construction
to encode parse forest filters [Heering et al. 1992]. To use this approach in conjunction with incre-
mental parsing, the productions to which priority constraints apply must be indicated in a manner
analogous to the itemization of conflict-causing productions in an LR parser generator.
20In practice it is unnecessary to store yield counts persistently; the count for a nontrivial subtree
reused by the parser can be approximated conservatively by the minimum yield of the production
it represents. If the environment already maintains the length of a subtree’s text as a synthesized
node attribute, this information can replace yield computation in the k = 1 case.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

24 � Tim A. Wagner and Susan L. Graham

bool is_fragile (NODE *node) {
return grammar!is_fragile_production(node!prog) || node!dyn_fragility;

}

class PARSE_STACK_ENTRY {
protected:
int beginning_state;
NODE *node;
void push (int old_state, NODE *node);
...

}

Extend the normal parse stack entry object with additional fields
class EXTENDED_STACK_ENTRY : public PARSE_STACK_ENTRY {
private:
bool left_fragile, right_fragile;
int total_yield;

public:
Push node onto the stack; its children are the nodes in the stack entries represented
by the children array.
EXTENDED_STACK_ENTRY (node, PARSE_STACK_ENTRY children[]) {

int i;
int num_kids = node!arity;
Compute conservative estimate of each child’s yield, as well as total yield.
int yield[num_kids];
for (i = 0; i < num_kids; i++) {

if (is_token(children[i]!node)) yield[i] = 1;
else if (has_type(EXTENDED_STACK_ENTRY, children[i]))

yield[i] = children[i]!yield;
else return grammar!estimate_yield(children[i]!node);
total_yield += yield[i];

}
Compute and record left side’s fragility.
left_fragile = false;
int exposed_yield = 0;
for (i = 0; i < num_kids; i++) {

if (grammar!is_fragile_production(children[i]!node!type) ||
has_type(EXTENDED_STACK_ENTRY, children[i]) &&

children[i]!left_fragile)
{left_fragile = true; break;}

else if ((exposed_yield = yield[i]) >= k) break;
}
Compute and record right side’s fragility (symmetric).
. . .
Set node’s dynamic fragility status.
node!dyn_fragility = left_fragile || right_fragile;

}
};

Fig. 11. Computation of dynamic fragility.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 25

cation occurs that might affect their structure. The only change required to the
sentential-form algorithm is the inclusion of the boxed code in Figure 7, which
replaces each fragile node appearing in the input stream with its constituents.

Unambiguous symbols (even those containing ambiguous structures, e.g.,
parenthesized expressions in the grammar of Figure 10) continue to be parsed
as fast as before. Only a lookahead with exposed ambiguous structure must
be broken down further in order to determine the next action. Fragile nodes
constitute a negligible portion of the tree across a variety of programs and lan-
guages studied (C, Java, Fortran, Modula-2); the additional (re)computation
has no noticeable impact on parsing performance. For grammars of practical
interest, the combination of sentential-form parsing and limited state match-
ing uses less time and space than full state-matching parsers, while supporting
the same class of conflict resolution mechanisms.

7. REPRESENTING REPETITIVE STRUCTURE

The asymptotic performance results described in this article require the parse
tree to support logarithmic search times. This is not the usual case: repetitive
structure, such as sequences of statements or lists of declarations, is typically
expressed in grammars and represented in trees in a left- or right-recursive
manner. Thus parse “trees” are really linked lists in practice, with the con-
comitant performance implication: any incremental algorithms degenerate to
at best linear behavior, providing no asymptotic advantage over their batch
counterparts.

There are two types of operators in grammars that create recursive structure:
those that might have semantic significance, such as arithmetic operators, and
those that are truly associative, such as the (possibly implicit) sequencing oper-
ators that separate statements. The former do not represent true performance
problems because the sequences they construct are naturally limited; for in-
stance, we can assume that the size of an expression in a C program is bounded
in practice. The latter type are problematic, since they are substantial in any
program of nontrivial length. Depending on the form of the grammar, modify-
ing either the beginning or end of the program—both common cases—will re-
quire time linear in the length of the program text even for an optimal incre-
mental parser.

To avoid this problem, we represent associative sequences nondeterministi-
cally; the ordering of the yield is maintained, but otherwise the internal struc-
ture is unspecified [Gafter 1990]. This convention permits the environment and
its tools the freedom to impose a balancing condition, of the sort normally used
for binary trees. (The small amount of reorganization due to rebalancing does
not affect user-visible tree structure and results in a net performance gain in
practice.) The appropriate data structures and algorithms are well known [Tar-
jan 1983], so we will concentrate instead on the interaction of nondeterministic
structure with incremental parsing.

An obvious way to indicate the freedom to choose an internal representation
for associative sequences is to describe the syntax of the language using an ex-
tended context-free (regular right part) grammar [LaLonde 1977]. We can use
the grammar both to specify the syntax of the language and to declaratively

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

26 � Tim A. Wagner and Susan L. Graham

describe the representation of the resulting syntax trees. Productions in the
grammar correspond directly to nodes in the tree, while regular expressions
denoting sequences have an internal representation chosen by the system to
guarantee logarithmic performance. Choice operators are not provided, since
alternatives are conveniently expressed as alternative productions for the same
grammar symbol. We will assume that any unbounded sequences are expressed
in this fashion in the grammar.

Note that changes to the grammar are necessary: the parser generator can-
not intuit the associativity properties of sequences, since it must treat the
grammar as a declarative specification of the form of the parse tree. (Other
tools will also base their understanding of the program structure on the gram-
mar.) Associativity, while regarded as an algebraic property of the sequencing
operator, is essentially a semantic notion, determined by the interpretation of
the operators.

Since sequence specification affects only the performance of incremental
parsing and not its correctness, existing grammars can be introduced to an
environment and then subsequently modified to provide incremental perfor-
mance. Changes required to port existing grammars (including Java and
Modula-2) to our prototype environment amounted to less than 1% of their text.
These changes also simplified the grammars, since regular expression notation
is more compact and readable than the recursive productions it replaces.

Given a grammar containing sequence notation, we transform it to a conven-
tional LR(k) grammar by expanding each sequence into a set of productions for
a unique symbol.21 The form of the productions expresses the associativity of
the sequence; Figure 12 illustrates the transformation. (The intermediate sym-
bol is required only for possibly empty sequences.)

The incremental parsing algorithm requires no changes in order to process
sequences.22 The expanded grammar will be ambiguous, but—unlike conflicts
in the original grammar—conflicts induced by the expansion of sequence nota-
tion do not require the special handling described in the previous section.

The simple “reconstruction” approach to handling ambiguity requires that a
left-recursive expansion of sequence notation result in a grammar that contains
no conflicts involving the sequences themselves. Such conflicts would represent
an impediment to incremental performance, requiring the sequence to be recon-
structed in its entirety whenever it appeared as a lookahead symbol. The gen-

21Note that the most powerful transformations—those involving right-recursive expansions of se-
quences [Heilbrunner 1979]—cannot be employed, since the goal of nondeterministic sequences is
to reuse nontrivial subtrees as they occur in the input stream, which precludes delaying all reduc-
tions until the entire sequence has been seen. The class of grammars permitted will be exactly
those that are acceptable given a left-recursive expansion of all sequences. Existing techniques
for constructing batch parsers directly from ELR(k) grammars [Sassa and Nakata 1987] cannot be
used; these algorithms treat sequences in an inherently batch fashion.
22It is not only not necessary but undesirable for the incremental parser itself to restore the balanc-
ing condition. Not only would this complicate parsing, it would not assist any other transformation
tool in maintaining the balancing condition. Instead, the environment should always rebalance
modified sequences immediately before committing the update. Tools should perform on-line re-
balancing only when performance would be severely degraded by waiting until the completion of
the edit.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 27

s ! L*
s ! B
B ! �

j B L

s ! A
A ! B j �
B ! L

j B B

a. Grammar with sequence
notation.

b. Conventional
left-recursive formulation.

c. Nondeterministic
specification.

L 0L BL

1B

1

L

B

B1

B1
1B

0 B

L

B

B1 1B

LLL

0B B00

A0

d. Right-recursive tree structure. e. Balanced tree structure.

Fig. 12. Supporting balanced structure. Regular expressions in the grammar (a) are used to de-
note the associative sequences. Instead of the conventional left-linear expansion employed in batch
parsing (b), each sequence operator is expanded into an additional symbol whose productions allow
nondeterministic grouping (c). The tree constructed by the parser for a sequence of new tokens is
initially unbalanced (d). Commit-time processing restores the balancing condition (e); the actual
representation will vary depending on the exact location of modifications and the specific rebalanc-
ing algorithm used. The metasyntax for sequence operators is summarized in Figure 13.

rhs ! symlist
symlist ! � j symlist sym

sym ! basesym
j basesym type separator
j (baselist) type separator

baselist ! basesym j baselist basesym
type ! * j +

separator ! � j [seplist]
seplist ! basesym j seplist basesym

basesym ! ident j charlit j stringlit

Fig. 13. Metasyntax for describing nondeterministic sequences. This is one possible notation: it
differentiates between zero-or-more and one-or-more sequences, and allows multiple symbols in
each sequence element as well as an optional separator. A comma-separated list of identifiers, e.g.,
would be written as idlist!ID+[’,’].

eral approach to combining state matching with the sentential-form framework
does not impose this limitation, but running time increases to O(t + s(lg N)2)
without the assumption that sequences do not conflict with other productions.

7.1 Performance Analysis

Although the techniques of earlier sections always produce correct incremental
parsers for any grammar accepted by the parser generator, the choice among
grammars accepting the same language matters greatly for the sake of incre-

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

28 � Tim A. Wagner and Susan L. Graham

mental performance. We now examine the assumptions that accompanied the
performance analysis of the algorithms in Sections 4 and 5.

The basic goal is to ensure that any node in the tree can be reached in loga-
rithmic, rather than linear, time. The tree must therefore be sufficiently well
balanced; in particular, any sequence that is unbounded (in practice) must be
represented as an associative sequence in the grammar. Note that nonassocia-
tive sequences, though syntactically unbounded, are limited in size by semantic
or pragmatic considerations. (For example, the length of individual expressions
and declarations in imperative languages, rules in Prolog, and primitive forms
in Lisp are all effectively bounded.)

Given the assumption that all unbounded sequences appear in the grammar
using the list notation, we can only violate the performance guarantee if the in-
terpretation of the yield of a sequence depends on its context. Consider a “bad”
grammar for the regular language (AjB)X+:

s ! A c+ j B d+

c ! X
d ! X

This grammar is clearly problematic, since the reduction of an X to either c or d
is determined by the initial symbol in the sentence, which is arbitrarily distant.
O(jsentence j) recomputation is therefore needed each time the leading symbol
is toggled between A and B.

Situations like this cannot arise when the interpretation of an associative
sequence’s terminal yield is independent of its surrounding context. In fact,
as long as the contextual effect on the structure of the phrase is limited to a
bounded number of terminals, the performance constraints hold. Since “incre-
mentalizing” a grammar to gain optimum performance already requires the de-
termination of its associative sequences, the check for invalid dependencies can
be handled by inspection.23

8. NODE REUSE

Incremental parsing is only one of several tools that collectively support incre-
mental compilation and associated environment services. Overall performance
is affected not just by the time it takes the incremental parser to update the pro-
gram’s structure, but also by the impact of the parser’s changes on other tools
in the environment. The reuse of nonterminal nodes by the parser is essential
both in achieving overall environment performance and in maintaining user
annotations. Figure 3 indicates the set of nodes that can be retained through
explicit reuse calculation in the common case of changing an identifier spelling.

8.1 Characterizing Node Reuse

We first define and justify the concept of reuse paths, then discuss a specific
policy for determining the set of available paths. A second, more aggressive,

23Fortunately, the form required for good incremental performance is also the simpler and more
“natural” expression of the syntax.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 29

policy is described in the following section. Methods for computing both policies
are covered in Section 8.3.

Any node reuse strategy must consider both tool and user needs. Our ap-
proach is based on a simple concept: reuse of a given node is indicated whenever
its context or its contents (or both) are retained. Thus reuse is justified by ex-
hibiting one or more paths from some base case to the node in question. Reused
context typically corresponds to a path between the UltraRoot and a reusable
node. This is referred to as top-down reuse. Reused content corresponds to a
path from a reused token to the reusable nonterminal node and is referred to
as bottom-up reuse.24

In both cases, the existence of such a path justifies the node’s reuse by “an-
choring” it to another retained node. Given the goals of node reuse, in particular
the need to avoid spurious or surprising results from the user’s perspective, we
also assert that the converse is true: the absence of such a path warrants the
use of a new name for the associated nonterminal. (Note that other formula-
tions of optimality, such as minimal edit distance, are not useful in the context
of an ISDE, given the objective of preserving conceptual names for program en-
tities.) Each reuse path establishes an inductive proof justifying the reuse of
nodes along the path, in a manner that matches user intuition and is likely to
improve overall environment response time. (The description of reuse paths is
actually a schema: different policies can be employed in determining the local
constraints on node reuse, generating different sets of paths in general.)

Bottom-up reuse is a natural extension of the “implicit” node reuse that oc-
curs when an incremental parser shifts a nontrivial subtree. In the unambigu-
ous policy, the physical object representing a nonterminal node can be reused
whenever all its children from the reference version are reused. Even with an
optimal incremental parser, explicit bottom-up reuse checks are necessary to
reverse the effect of a breakdown that turned out to be unnecessary, since an
optimal choice of breakdown order cannot be known in advance (Section 5.2).
Explicit reuse of modified tokens by the incremental lexer and the presence
of errors in the input stream introduce additional possibilities for node reuse
through explicit bottom-up checks.

Top-down reuse is defined analogously: if a node exists in both the current
and previous version of the tree and its ith child is changed but represents the
same production in both versions of the tree, then the ith child node may be
reused in the new version. Figure 14 illustrates both types of reuse paths.

Several incremental parsing algorithms have tried to capture a subset of
top-down reuse by implementing a matching condition [Larchevêque 1995; Li
1995b; Petrone 1995]. This is a test that indicates when a change can be
“spliced” into the existing tree structure, thus avoiding the complete recon-
struction of the spine nodes. The technique has a historical basis (it was
first introduced by Ghezzi and Mandrioli [1980]) that has precluded better ap-

24Recall from Section 3 that the UltraRoot persists across changes. We also assume that the set
of reused tokens is known and that the incremental lexer does not change the relative order of any
reused tokens. �-subtrees retained by the parsing algorithm can also serve as starting points for
bottom-up reuse paths.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

30 � Tim A. Wagner and Susan L. Graham

a

b

c d

Fig. 14. Illustration of reuse paths. In each case, the circle represents a reused node, and the lines
indicate the reuse path the justify its retention in the current version by linking it to some base case.
(a) Unambiguous bottom-up reuse (reused contents). (b) Top-down reuse (reused context). (c) Am-
biguous bottom-up reuse policy; only a subset of the children are required to remain unchanged.
(d) Additional top-down reuse that can result under the ambiguous model.

proaches: the time to test matching conditions and maintain the data needed
to perform the tests outweighs the cost of a simple parsing algorithm followed
by a direct reuse computation.25

The combination of bottom-up and top-down reuse results in optimal node
reuse: the set of reuse paths computed are globally maximal, and no addi-
tional reuse is justified given the unambiguous policy decision. This definition
of reuse is expressed without reference to a particular parsing algorithm, lan-
guage, or editing model.

8.2 Ambiguous-Reuse Model

The policy of restricting bottom-up reuse to only those nodes for which all the
children are reused may appear overly restrictive. We can relax the bottom-
up reuse constraint to include any case where at least one child remains un-
changed. This expanded definition can only increase the total number of reused
nodes, since cases of partial overlap with new material are now included. As an
example, consider changing the conditional expression in an if/then state-
ment: the statement node itself can be retained despite the replacement of one
of its children.

The relaxed constraint on bottom-up reuse introduces a potential ambiguity.
Consider what happens if two children of a node both exist in the new version
of the tree but with different parents. Which, if either, should be the reuse site?
Such decisions require resolution outside the scope of syntactic reuse computa-
tion per se: the desired outcome may depend on the specific language, details
of the environment, or the user’s preference. The policy we adopt in our im-
plementation is first-come/first-served; the order is determined by operational
details of the parser.26 Ambiguous bottom-up reuse can also create new start-

25In addition, the use of matching conditions precludes incremental synthesized attribution in con-
junction with parsing.
26Other reasonable policies, such as refusing to reuse a node if there are competing reuse sites or
a voting scheme based on the site with the larger number of children, are facilitated by replacing
the bottom-up reuse check with the creation of a list of potential sites; these sites can be processed
once parsing is complete and the tree is intact, but before top-down reuse takes place.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 31

Reuse a parent when the same production is used and all children remain the same.
NODE *unambig_reuse_check (int prod, NODE *kids[]) {
if (arity of prod == 0) return make_new_node(prod);
NODE *old_parent = kids[0]!parent(previous_version);
if (old_parent!type != prod) return make_new_node(prod);
for (int i = 0; i < arity of prod; i++)

if (node!is_new(kids[i])) return make_new_node(prod);
else if (old_parent != kids[i]!parent(previous_version))
return make_new_node(prod);

return old_parent;
}

Fig. 15. Computing unambiguous bottom-up node reuse at reduction time. The reuse algorithm
will either return a node from the previous version of the tree (when the production is unchanged
and all the children have the same former parent) or create a new node to represent the reduction in
the new tree (make_new_node). Access to the previous children is provided by the history interface
presented in Figure 1.

ing points from which top-down reuse paths can originate (Figure 14(d)).
Under the ambiguous policy, the set of reuse paths is maximal (no path can be

legally extended), but a global maximum is not well defined; it depends in gen-
eral on the policy for resolving “competition” when the reuse paths do not form
a tree. (However, such differences are slight, and more elaborate metrics—such
as maximizing the total number of reused nodes—provide too little additional
benefit for the time required to compute them.)

8.3 Implementation

We now consider implementation methods for discovering bottom-up reuse dur-
ing incremental parsing, and top-down reuse as a postpass following the parse.
Our methods avoid the space overhead and suboptimal behavior associated
with reuse computed through matching conditions.

Bottom-up reuse is computed most easily by adding an explicit check when-
ever the incremental parser performs a reduction. In the unambiguous case,
each node representing a symbol in the right-hand side of the production must
itself be reused and must share the same parent node from the previous ver-
sion. Figure 15 illustrates this test.

Ambiguous bottom-up reuse can be computed in a similar manner by relaxing
the reuse condition (Figure 16). Under this policy, only a single retained child
is required to trigger the reuse of its former parent. Since the previous set of
children may be split across multiple sites in the new version of the tree, this
algorithm must guard against duplicate reuse of the parent by maintaining an
explicit table of reused nodes during the parse. (In the unambiguous policy,
competition for a single node cannot occur.)

Top-down reuse is computed as a separate postpass. It involves a recursive
traversal of the current tree, limited to the regions modified by the incremental
parser. Each nonnew node with one or more changed children is subject to the
top-down check, which attempts to replace each new child with its counterpart
from the previous version of the tree.

The algorithm in Figure 17 illustrates this process. Reachability analysis dis-
covers nodes in the previous version of the tree that have been eliminated in the

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

32 � Tim A. Wagner and Susan L. Graham

Reuse a parent when the same production is used and at least one child is unchanged.
NODE *ambig_reuse_check (int prod, NODE *kids[]) {

if (arity of prod == 0) return make_new_node(prod);
for (int i = 0; i < arity of prod; i++)
if (!node!is_new(kids[i])) {
NODE *old_parent = kids[i]!parent(previous_version);
if (old_parent!type == prod && !in_reuse_list(old_parent)) {

add_to_reuse_list(old_parent);
return old_parent;

}
}

return make_new_node(prod);
}

Fig. 16. Computing ambiguous bottom-up node reuse at reduction time. This method differs from
that of Figure 15 by allowing a partial match to succeed: if a reuse candidate can be found among
the former parents of reused children, it will be used to represent the production being reduced.
A simple FCFS policy resolves competition for the same parent when its former children appear
in multiple sites in the new tree. Duplicate reuse is avoided by maintaining a list of the explicitly
reused nodes.

Compute top-down reuse in a single traversal of the new tree.
top_down_reuse () {

compute_reachability(); Mark deleted nodes.
top_down_reuse_traversal(UltraRoot);

}

Apply a localized top-down reuse check at each modification site.
top_down_reuse_traversal (NODE *node) {

if (node!has_changes(local) && !node!is_new())
reuse_isomorphic_structure(node);

else if (node!has_changes(nested))
foreach child of node do top_down_reuse_traversal(child);

}

Restore reuse paths descending from node.
reuse_isomorphic_structure (NODE *node) {

for (int i = 0; i < node!arity; i++) {
NODE *current_child = node!child(i);
NODE *previous_child = node!child(i, previous_version);
if (current_child!is_new() && !previous_child!exists() &&

current_child!type == previous_child!type) {
replace_with(current_child, previous_child);
reuse_isomorphic_structure(previous_child);

} else if (current_child!has_changes(nested))
top_down_reuse_traversal(current_child);

}
}

Fig. 17. Computing top-down reuse. The algorithm performs a top-down traversal of the struc-
ture that includes each modification site, attempting to replace newly created nodes with discarded
nodes. compute_reachability identifies the set of nodes from the previous version of the tree
that were discarded in producing the current version; these nodes are the (only) candidates for top-
down reuse.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 33

new version; the deleted nodes constitute the (only) candidates for top-down
reuse. (Without the reachability check, top-down reuse could duplicate nodes
reused implicitly by the incremental parser.) No changes to the algorithm in
Figure 17 are required to support the ambiguous-reuse model.

8.4 Correctness and Performance

Adding explicit reuse to the incremental parser can never result in a node be-
ing used twice. Unambiguous bottom-up reuse avoids node duplication by con-
struction. Bottom-up reuse in the ambiguous model and top-down reuse both
contain an explicit guard against duplication. Each bottom-up check is per-
formed in constant time and adds no significant overhead to incremental pars-
ing. Top-down reuse does not affect the asymptotic results in Section 7, since
only nodes touched by the incremental parser are examined. The combination
of optimistic sentential-form parsing, reuse checks at reduction time, and a sep-
arate top-down reuse pass results in optimal reuse in the unambiguous case
and a maximal solution in the ambiguous model, computed in optimal space
and time.

Our preferred approach in practice is to apply ambiguous bottom-up reuse
without the top-down pass: this locates virtually all the reusable nodes in-
cluding most of those on top-down reuse paths. (Only some cases involving
�-subtrees and chain rules can be missed, when no children exist to anchor the
parent node’s reuse.) In the example shown in Figure 3, this simple method
results in only one changed node in the entire tree: the modified token.27

9. CONCLUSION

This article provides four main research contributions. First, it offers a general
algorithm for incremental parsing of LR grammars that is optimal in both time
and space and supports an unrestricted editing model. Existing techniques for
constructing LR(k), LALR(k), and SLR(k) parsers can be used with very little
modification.

Second, it extends sentential-form parsing theory to permit the use of am-
biguous grammars (in conjunction with static disambiguation mechanisms), al-
lowing the sentential-form approach to apply to grammars in widespread use.
Extensions to the parsing algorithm to support static filtering of the parse for-
est are both simple and efficient.

Third, it describes the importance of balancing lengthy sequences, providing
a solution in terms of grammar notation, parse table construction, and runtime
services. In conjunction with this representation, a realistic performance model
is offered that allows for meaningful comparisons with batch parsing and other
incremental algorithms.

Finally, we define optimal node reuse independently of the operational de-
tails of parsing. General models of ambiguous and unambiguous reuse are pre-
sented, along with simple and efficient methods to implement both approaches.

27If the lexer reuses this token, the tree will possess no changes whatsoever after the lexing/parsing
analysis. Obviously the user’s modification has semantic significance; the original edit, along with
its path information, remains available to tools, such as semantic analysis, for their own analyses.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

34 � Tim A. Wagner and Susan L. Graham

ACKNOWLEDGMENTS

We are grateful to the Ensemble developers for helping to create an appropri-
ate testbed for this project. Special thanks go to John Boyland, Todd Feldman,
William Maddox, Vance Maverick, and the anonymous reviewers for their com-
ments on drafts of this article.

REFERENCES

AASA, A. 1995. Precedences in specifications and implementations of programming languages.
Theor. Comput. Sci. 142, 1 (May), 3–26.

AGRAWAL, R. AND DETRO, K. D. 1983. An efficient incremental LR parser for grammars with
epsilon productions. Acta Inf. 19, 369–376.

AHO, A. V., JOHNSON, S. C., AND ULLMAN, J. D. 1975. Deterministic parsing of ambiguous gram-
mars. Commun. ACM 18, 8 (Aug.), 441–452.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass.

BALLANCE, R. A., BUTCHER, J., AND GRAHAM, S. L. 1988. Grammatical abstraction and incre-
mental syntax analysis in a language-based editor. In Proceedings of the ACM SIGPLAN ’88
Symposium on Compiler Construction. ACM Press, New York, 185–198.

BEETEM, J. F. AND BEETEM, A. F. 1991. Incremental scanning and parsing with Galaxy. IEEE
Trans. Softw. Eng. 17, 7 (July), 641–651.

BURKE, M. G. AND FISHER, G. A. 1987. A practical method for LR and LL syntactic error diagnosis
and recovery. ACM Trans. Program. Lang. Syst. 9, 2 (Apr.), 164–197.

CORBETT, R. 1992. bison release 1.24. Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA 02139.

DEGANO, P., MANNUCCI, S., AND MOJANA, B. 1988. Efficient incremental LR parsing for syntax-
directed editors. ACM Trans. Program. Lang. Syst. 10, 3 (July), 345–373.

GAFTER, N. M. 1990. Parallel incremental compilation. Ph.D. dissertation, University of
Rochester, Rochester, N.Y.

GHEZZI, C. AND MANDRIOLI, D. 1980. Augmenting parsers to support incrementality.
J. ACM 27, 3 (July), 564–579.

HEDIN, G. 1992. Incremental semantic analysis. Ph.D. dissertation, Department of Computer
Science, Lund University.

HEERING, J., HENDRIKS, P. R. H., KLINT, P., AND REKERS, J. 1992. The syntax definition for-
malism SDF — Reference Manual. ASF+SDF Project.

HEILBRUNNER, S. 1979. On the definition of ELR(k) and ELL(k) grammars. Acta Inf. 11, 169–176.
JALILI, F. AND GALLIER, J. H. 1982. Building friendly parsers. In Proceedings of the 9th ACM

Symposium on the Principles of Programming Languages. ACM Press, New York, 196–206.
KLINT, P. AND VISSER, E. 1994. Using filters for the disambiguation of context-free grammars. In

Proceedings of the ASMICS Workshop on Parsing Theory.
LALONDE, W. R. 1977. Regular right part grammars and their parsers. Commun. ACM 20, 10,

731–740.
LARCHEVÊQUE, J. M. 1995. Optimal incremental parsing. ACM Trans. Program. Lang. Syst. 17, 1,

1–15.
LI, W. X. 1995a. A simple and efficient incremental LL(1) parsing. In SOFSEM ’95: Theory and

Practice of Informatics (Milovy, Czech Republic). Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 399–404.

LI, W. X. 1995b. Towards generating practical language-based editing systems. Ph.D. dissertation,
University of Western Australia.

MADDOX, W. 1997. Incremental static semantic analysis. Ph.D. dissertation, University of
California, Berkeley. Tech. Rep. UCB/CSD–97–948.

MAVERICK, V. 1997. Presentation by tree transformation. Ph.D. dissertation, University of
California, Berkeley. Tech. Rep UCB/CSD–97–947.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

Efficient and Flexible Incremental Parsing � 35

MURCHING, A. M., PRASAD, Y. V., AND SRIKANT, Y. N. 1990. Incremental recursive descent
parsing. Comput. Lang. 15, 4, 193–204.

PETRONE, L. 1995. Reusing batch parsers as incremental parsers. In Proceeding of the 15th
Conference on Foundations of Software Technology and Theoretical Computer Science
(Bangalore, India). Lecture Notes in Computer Science, vol. 1026. Springer-Verlag, Berlin,
111–123.

REPS, T. W. AND TEITELBAUM, T. 1989. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, Berlin.

SASSA, M. AND NAKATA, I. 1987. A simple realization of LR-parsers for regular right part
grammars. Inf. Proc. Lett. 24, 113–120.

SHILLING, J. J. 1992. Incremental LL(1) parsing in language-based editors. IEEE Trans. Softw.
Eng. 19, 9 (Sept.), 935–940.

TARJAN, R. E. 1983. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, Pa.

THORUP, M. 1994. Controlled grammatic ambiguity. ACM Trans. Program. Lang. Syst. 16, 3
(May), 1024–1050.

VAN DE VANTER, M. L., GRAHAM, S. L., AND BALLANCE, R. A. 1992. Coherent user interfaces
for language-based editing systems. Int. J. Man-Machine Stud. 37, 431–466.

VISSER, E. 1995. A case study in optimizing parsing schemata by disambiguation filters. Tech.
Rep. P9507, Programming Research Group, University of Amsterdam. July.

WAGNER, T. A. 1997. Practical algorithms for incremental software development environments.
Ph.D. dissertation, University of California, Berkeley. Tech. Rep. UCB/CSD–97–946.

WAGNER, T. A. AND GRAHAM, S. L. 1997. Efficient self-versioning documents. In CompCon ’97.
IEEE Computer Society Press, Los Alamitos, Calif., 62–67.

WEGMAN, M. N. 1980. Parsing for structural editors. In Proceeding of the 21st Annual IEEE
Symposium on Foundations of Computer Science. IEEE Press, New York, 320–327.

YANG, W. 1994. Incremental LR parsing. In 1994 International Computer Symposium Conference
Proceedings vol. 1. National Chiao Tung University, Hsinchu, Taiwan, 577–583.

YEH, D. AND KASTENS, U. 1988. Automatic construction of incremental LR(1) parsers. ACM
SIGPLAN Not. 23, 3 (Mar.), 33–42.

Received April 1996; revised September 1997; accepted December 1997

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March 1998.

