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We present the first fully general approach to the problem of incremental lexical analysis.
Our approach utilizes existing generators of (batch) lexical analyzers to derive the information
needed by an incremental run-time system. No changes to the generator’s algorithms or run-time
mechanism are required. The entire pattern language of the original tool is supported, including
such features as multiple user-defined states, backtracking, ambiguity tolerance, and non-regular
pattern recognition. No a priori bound is placed on the amount of lookahead; dependencies are
tracked dynamically as required. This combined flexibility makes it possible to specify the lexical
rules for real programming languages in a natural and expressive manner. The incremental lexers
produced by our approach require little additional storage, run in optimal time, accommodate
arbitrary (mixed) structural and textual modifications, and can retain conceptually unchanged
tokens within the updated regions through aggressive reuse. We present a correctness proof and
a complete performance analysis and discuss the use of this algorithm as part of a system for
fine-grained incremental recompilation.
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ments—interactive; D.2.7 [Software Engineering]: Distribution and Maintenance—version con-
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tems and compiler generators; E.1 [Data]: Data Structures—trees
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1. INTRODUCTION

Batch lexers derive a stream of tokens by processing a stream of characters
from left to right. Several tools that facilitate the construction of such lexers
have been devised, including the well-known Unix tools lex [Lesk and Schmidt
1979] and flex [Paxson 1995]. These tools support an extension of regular
expression notation as their pattern set. Each pattern is associated with a
rule; in many problem domains the goal is to partition the character stream
into tokens, and each rule typically constructs (part of) a token from the text
matched by its corresponding pattern.

In some situations, such as in a software development environment (SDE),
a series of character streams are repeatedly analyzed with few differences
(relative to the total number of tokens in the program) from one application of
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2 . T. Wagner and S. Graham

lexical analysis to the next. Since tokens typically have very limited contextual
dependencies, the resulting differences in the token stream are typically limited
to the area immediately surrounding modification sites. In this setting it makes
sense to retain the token stream as a persistent data structure and use it to
decrease the time required for subsequent analyses. We will refer to this
as incremental lexing and the tool that performs it as an incremental lexer.
Our approach exploits existing technology for generating batch lexers by using
the output of these tools produce in conjunction with an incremental run-time
system.

This approach has several advantages. No changes to the generator’s im-
plementation are necessary. No assumptions about the implementation of the
batch lexer are made; our prototype uses dynamic linking to load C and/or
C++ code, so the generator can use any combination of tables and code without
affecting the incremental run-time service. No new descriptive formalisms are
introduced, and very few changes to a given lexical description are required to
‘port’ it to an incremental setting. (Alternatively, an imperative pattern lan-
guage and embedded programming language may be used as a powerful compi-
lation target for higher-level declarative descriptions.) The technique produces
incremental lexers whose performance is competitive with hand-coded imple-
mentations.

Our approach is novel in supporting the full expressive power of the un-
derlying tool's pattern language, including: user-defined states, multiple to-
kens/pattern match, multiple pattern matches/token, ambiguity tolerance, and
unbounded lookahead. In fact, arbitrary code can be used in constructing a con-
tiguous sequence of tokens; this can be used, for example, to match non-regular
syntax.

By capturing the state of the batch lexing machine at the conclusion of each
token’s creation and saving it within the token, we are able to restart lexical
analysis at point in the token stream. This provides extremely fine-grained
incrementality. (Restarting lexing within tokens is not only unnecessary in
practice but would require novel generation techniques and a significant in-
crease in the complexity of the run-time system and the size of the persistent
lexical stream.)

A common, though restrictive, method for handling the contextual dependen-
cies arising in lexical analysis is to place an a priori bound on the maximum
amount of lookahead, either by having the language designer provide it or by
having the generator compute it through analysis of the lexical description.
Either way the expressivity of the language suffers, since any fixed bound
on the length of a dependency may be insufficient for a particular language.
Languages with unbounded lookahead and natural descriptive techniques that
similarly lead to unbounded lookahead are entirely prevented by a fixed bound
approach. We remove this restriction by tracking dependencies dynamically,
resulting in a larger class of languages which can be expressed and potentially
faster running times (because the actual dependencies are used instead of a
worst-case assumption).

Dynamic dependencies can be explicitly recorded in tokens at a modest space
cost and no performance cost. But even for languages or descriptive techniques
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General Incremental Lexing . 3

requiring potentially unbounded lookahead, the vast majority of cases involve a
token relying only on the following character. For this reason, we can typically
avoid explicit storage by representing only the exceptional cases using an as-
sociative data structure. This approach results in the most expressive possible
notation with no performance penalty and negligible additional space.! (For
the sake of clarity, we will always represent inter-token dependencies explicitly
in our discussion and figures.)

Our incremental lexing algorithm operates in optimal time and is linear in
the number of affected characters—the characters in modified tokens and in
tokens whose lookahead reached (or which are reached by lookahead from)
modified tokens. The batch lexer is invoked the minimal number of times:
once for each token in the updated token stream whose contents, lookahead,
or starting state may have been modified. No additional asymptotic overhead
accrues due to the incremental run-time service; it operates in time linear in
the number of old and new tokens containing affected characters.?

The overhead associated with locating modification sites depends on the rep-
resentation in which incremental lexing is embedded. A simple list of modified
tokens would add no asymptotic overhead and could be used to implement
the algorithms presented here. However, our primary application is the in-
cremental analysis of programs within an incremental software development
environment (ISDE), in which case the tokens will be leaves of a syntax tree.
This tree can be maintained in a balanced fashion if unbounded sequences
(such as declarations and statements) are represented correctly [Gafter 1990;
Wagner and Graham 1996a]. Under this assumption, the time to locate a
particular token is logarithmic in the total number of tokens.

In addition to providing the full expressive power of the underlying batch
pattern language and unbounded lookahead, this algorithm is also novel in
addressing the problems of mixed structural and textual edits with arbitrary
timing of analyses.. We also discuss issues pertinent to an ISDE, including
optimal token reuse, efficient use of distributed history information, efficient
reversibility of the lexer’s transformation, and parallel operation of the incre-
mental lexer with the incremental parser (needed for such languages as C
and C++).

The remainder of this paper is organized as follows. Section 2 discusses
related work. In Section 3 we provide the background for incremental lexing:
the editing model, interface to the batch lexer, and persistent representation
of state and contextual dependency information in the token stream. We also
discuss the pass structure of the incremental lexing algorithm and introduce a
running example. The next three sections elaborate on the implementation and
analysis of each pass. In Section 4 we discuss the algorithm for combining a set
of textual and/or structural modifications and dynamic dependency information

1A trivial amount of space is required during the actual analysis. In the absence of an explicit
history service, at least two additional bits in each token and interior tree node would be required
to summarize modifications during editing.

2Dependency analysis can be super-linear in the number of extant lookaheads; we make the reason-
able assumption that this parameter is bounded by a small constant in any practical description.

written for ACM Transactions on Programming Languages and Systems, December 6, 1999 at 02: 21.



4 . T. Wagner and S. Graham

to discover the prefix set of tokens. Section 5 describes incremental lexing
per se, by giving an algorithm that traverses each affected region and restores
the consistency of its text and token boundaries. Finally, Section 6 discusses
the post-pass that updates inter-token dependencies when they are tracked
dynamically. Each section discusses the correctness and performance of the
algorithms it contains. The use of incremental lexing as part of an integrated
approach to incremental software development is taken up in Section 7, which
considers the topics of token reuse, reversibility of the lexical transformation,
and error isolation and recovery.

2. RELATED WORK

Unlike incremental parsing, little has been published on incremental lexing
despite a number of research and commercial environments that incorporate
some variant of it [Bahlke and Snelting 1986; Reps and Teitelbaum 1989;
Jacobs and Rideau-Gallot 1992; ?; Fischer et al. 1986; ?]. Although the theory
of regular expressions is simpler than the parsing theory typically required
for incremental analysis [Larchevéque 1995; Wagner and Graham 1996a], the
need for dynamic dependency tracking results in a more complex run-time
mechanism for incremental lexing.

Several mono-lingual environments have also included incremental lexical
analysis [Delisle et al. 1986; Ross 1986]. These systems of course have the
advantage of only requiring sufficient expressiveness for a single language.
However, our goal was to devise a multi-lingual approach that could employ
formal language definitions, reuse existing language definitions in a familiar
formalism, and provide maximum expressiveness and flexibility without com-
promising performance.

Other approaches rely on extremely restrictive editing models or fail to
be truly incremental. The Galaxy environment [Beetem and Beetem 1991]
touches every token on any textual modification to the program. The Syn-
thesizer Generator [Reps and Teitelbaum 1989] limits the user to a single
outstanding edit, for which batch lexical analysis is employed to incorporate a
textual modification. PSG [Bahlke and Snelting 1986] permits either textual
or structural modifications, but not both, and halts its incorporation of textual
modifications at the first error it encounters, rather than continuing its anal-
ysis. Its lexical generator, Aladin [Fischer et al. 1992], produces incremental
lexers that cannot use more than a single character of lookahead.

The Pan system [Ballance et al. 1992] possesses truly incremental lexical
analysis, in that an unlimited number of disjoint textual edits can be applied
to the program between analyses, and lexing is then applied only to the out-
of-date portions of the program. Pan is also a multi-lingual system, compiling
language descriptions off-line and loading the compiled results into a single,
multi-language environment. However, this system limits contextual depen-
dencies to a single token.3

SRegular expression notation is used for the pattern language, but many of the language features
of flex are not provided. A special-purpose syntax is available for describing nested comment con-
ventions (which would otherwise be inexpressible). Our approach supports non-regular patterns
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General Incremental Lexing . 5

The POE environment [Fischer et al. 1986] provides per-character error re-
porting by using a lexical analyzer capable of stopping and resuming at any
point. This complicates the design, is not compatible with existing genera-
tors, and does not provide a useful increase in practical performance, since one
can simply restart analysis from the beginning of the previous token if desired.
While it is not our belief that character-by-character analysis is of practical use,
the algorithms described here can implement this policy without modification,
since it is merely a special case of our more general editing model.

Other researchers [Szafron and Ng 1990; Heering et al. 1992] have focused
on the problem of incremental generation of batch lexical analyzers, as op-
posed to incremental lexing. Since language specifications are long-lived and
infrequently changed relative to the number and frequency of changes made
to programs written in those languages, we have been more concerned with
the speed of the compile cycle than the speed of the compiler-compile cycle.
Nevertheless, an incremental lexical specification for a typical programming
language (C) can be generated in under 3 seconds on a typical Unix worksta-
tion and dynamically loaded into a running environment in under 1/10 second,
making lexical specification compilation itself an interactive process without
resorting to incremental or lazy generation techniques.

Gandalf? PECAN? Others? Leif? Fred? (do Sue or Bill have this?)

3. FRAMEWORK AND OVERVIEW

In this section we discuss the framework of incremental lexing, including the
editing model, the form of both individual tokens and (versions of) the token
stream, and the model of the batch lexer. This section also introduces our
running example and concludes with an overview of the pass structure of the
incremental lexical analysis algorithm.

3.1 A Running Example

Figure 1 contains the original and modified program text that serves as our
sample editing sequence. The idea behind this user-supplied transformation is
that the timing of the decision to execute debugging statements in the program
is being changed from compilation (hence the use of the preprocessor directive
to perform conditional compilation) to run-time. The lexical description in Fig-
ure 2 uses flex's notation [Paxson 1995] to specify a portion of the tokenization
required by the preprocessor language. No previously published work or exist-
ing environments supporting incremental lexing can correctly implement this
combination of language features and editing sequence. Our approach not only
supports this transformation, it does so optimally.

3.2 Token Representation

Incremental lexing is the incremental maintenance of the mapping between
a textual stream and a token stream. Each character belongs to exactly one
token, and the lexer must partition the textual stream by locating the inter-

in a general fashion, by permitting arbitrary code to be used in the construction of tokens. The
translation from Pan’s notation into flex-style patterns and rule actions is straightforward.
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Before:

/* check for debugging */ #if (DEBUG==1) ...

After:

/* check for debugging */ if (DEBUG==1) ...

Fig. 1. A sample editing scenario used as our running example. The deletion of the # character
changes the meaning of the line by altering it from a preprocessor directive to a sequence of ordinary
tokens in C or C+*. The essential problem for the incremental lexer is discovering that the textual
modification requires replacing the preprocessor keyword PP_IF with the normal keyword KW_IF,
even though the lexeme remains unchanged.

whitespace [ \tl*

COmment ||/*||(["*] |||*||["/])*ll*/"
ident [_a-zA-Z][_a-zA-Z0-9]*
intconst [1-9]1[0-9]*

%start pp_directive

hh

comment return CMNT();

whitespace return WS();

\n BEGIN(INITIAL); return WSQ);

“\(whitespace|comment)*# BEGIN(pp_directive);

<pp_directive>if return PP_IF();

<INITIAL>if return KW_IF();

# return PND();

( return LP();

ident return IDENT();

== return EQEQQ);

intconst return INTCONST();

) return RP();
error();

hh

Fig. 2. A partial lexical specification for our running example, using the notation of flex. Each line
before the first %% denotes a macro definition which may appear in the patterns. Each line above
the final %% contains a pattern on the left and a corresponding ‘action’ on the right. For the purposes
of this paper, the rule can be thought of as a procedure written in C*+ and combined with the auto-
matically-generated batch lexing machine. The typical action is simply a constructor for the token
class. By default the text matching the pattern is passed to the constructor to form the token’s
lexeme (this and other details of token construction are omitted from the figure). The notation
<state> denotes restricts a rules applicability to the named state; state transitions are indicated
by BEGIN statements. The backslash indicates trailing (right) context that is required in order to
match the pattern, but does not become part of the pattern text handed to the corresponding action.
A caret at the beginning of a pattern indicates that beginning-of-file or newline must precede the
pattern. INITIAL refers to the machine’s normal state.
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struct TOKEN {
INT type; Token type (class).
STRING lexeme; Token'’s text.
TREE_NODE *parent; Parent in tree.
Fields used and maintained by the incremental run-time mechanism:

INT state; State of lexing machine when the token is constructed.
INT lookahead; Number of characters read beyond lexeme.
INT lookback; Earliest preceding token whose lookahead reached lexeme.

};

Fig. 3. Representation of tokens. The type field is set once, when the token is constructed. The
parent field is used by the editor to maintain a balanced tree representation. The lexeme and
state fields are set when the token is constructed and maintained thereafter by the incremental
run-time service, which also maintains the dependency-related fields. In practice, the incremental
fields are represented implicitly, but for clarity we include them here.

token boundaries and assigning a type to each resulting lexeme. We will
assume that the mapping from a token to its lexeme is explicit and computable
in constant time. Tokens persist until deleted explicitly through editing or
implicitly when an invocation of incremental analysis fails to retain them in
the resulting token stream. Tokens are created by the batch lexer; if the editor
explicitly construct tokens, it must ensure the correctness of their fields or
consider them as outdated portions of the stream. The beginning of the token
stream is marked with a sentinel called bos, the end of the stream by eos.
In a typical ISDE (and in our presentation of the algorithm), tokens will be
represented as the leaves of a balanced binary tree. Figure 3 summarizes the
internal representation of a token; the incremental fields are described below.

3.3 Edit Model and Historical Views

Explicit editing of both text and tree structure is permitted, with an unlimited
number of edit sites and arbitrary timing in the application of lexical analysis.
Both textual and structural editing will, in general, temporarily violate the
consistency between tokens and their lexemes; invoking the incremental lexer
will restore consistency.*

Since the editing model is fully general, the exact form of various operations
is immaterial. A textual insertion between two tokens, for example, can be
recorded as an insertion to the end of the earlier lexeme,® as an insertion to the
beginning of the latter lexeme, or even as a structural operation that introduces
a new ‘placeholder’ token between them. (Deleting the entire lexeme of a token
offers a similar variety of representation choices.)

Our presentation will assume the existence of a powerful set of history ser-
vices. These services record changes made to the text and structure and assist
the lexer to traverse the modified portions of the tree efficiently. The history

4Note that consistency is not the same as correctness. ‘Errors’, in the sense of textual sequences
not permitted by the language definition, can be represented in several ways and can persist indef-
initely in the token stream until corrected by the user. Section 7.3 discusses error representation
in more detail.

5This is the representation used in our prototype. Insertions at the beginning of the program are
added to the ‘lexeme’ of bos.
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Functions exported by the batch lexer:
INT get_state ()

void set_state (STATE state)

list of TOKEN* more_tokens ()

Functions called by the batch lexer:
INT next_char ()

Fig. 4. Interface to the batch lexing machine. The primary operation is more_tokens, which
constructs an atomic token sequence (Section 3.5) and returns it. Two new operations are required
of the batch machine when it is used in an incremental setting: get_state and set_state. These
have no counterpart in batch analysis; they are used to record the current state when a token is
constructed and to place the batch machine into a preserved inter-token state in order to re-start
it at a location other than the beginning of the token stream. The next_char function is provided
to the batch lexer by the incremental run-time service: it uses the lexemes of the persistent token
stream to provide the input, as opposed to the buffering and file 1/0 used in a conventional batch
setting.

service makes this focused traversal possible by providing two attributes on
each internal and leaf node of the tree. The local attribute indicates that local
changes occurred; this represents direct textual or structural editing at that
site. The nested attribute indicates nodes on a path to one or more locally
changed sites.

The current version of the tree (and hence the token stream that represents
the left-to-right ordering of its leaves) is fully maintained at all times. In
addition to the current version, however, the history services also support
historical views—the ability to access other versions of the tree as if they were
logically separate copies. (When no version argument is present in a query
function, the current version is implied.)

The incremental lexing algorithms as we present them make extensive use of
historical views.® Three versions of the token stream are of interest. The cur-
rent version represents the output of the incremental lexer (and usually other
analysis tools, such as an incremental parser, semantic analyzer, etc.). The
previous version represents the token stream as it existed immediately prior
to the start of re-analysis. The order of the characters between the previous
and current versions is unchanged, but the token types and boundaries will, in
general, have changed. The lexemes of the previous version supply the input
to the batch lexer. The final version of interest is the previously-analyzed or
last-lexed version. The set of modifications applied by the user between the
last lexed version and the previous version constitute the regions requiring
re-analysis (along with additional areas dependent upon them, as discussed
below). At the conclusion of the analysis, the current version becomes the
last-lexed version for the next round of editing.

3.4 Batch Lexer Model
The model of the batch lexer is represented by the interface in Figure 4.

6Simultaneous access to multiple token streams dramatically simplifies the details of the imple-
mentation. However, it is not an intrinsic requirement, and the mechanism could be simulated
within the editing operations and incremental run-time service if necessary.
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The incremental run-time system uses the batch lexer as a subroutine, calling
more_tokens to produce the next token sequence. The incremental lexer pro-
vides the batch lexer with the next_char function to read characters from the
lexemes of the previous token stream.

Reusing a batch lexer in an incremental environment requires addressing
two additional issues: the ability to restart the batch machine at a point other
than the beginning of the character stream (when it is in the INITIAL state) and
the contextual dependencies that result when the batch lexer calls next_char
to read characters beyond a token’s own lexeme.

3.5 Preserving Lexing States

The state field in each token is used to preserve a snapshot of the internal
configuration of the batch lexing automaton. At the conclusion of a rule that
constructs a token, the constructor will call get_state to read the state of
the lexer and preserve it in the token. At some later time, this preserved
state information will permit the incremental run-time service to restart anal-
ysis immediately to the right of this token by passing the saved state to the
set_state function.

Our approach does not specify the form of the state information, but does
assume that it is small enough to be conveniently recorded in each token and
that it can be passed to/from the batch lexer in constant time using the functions
of Figure 4. flex and lex, for example, both require only a small integer to
record an inter-token state. (This is referred to as the ‘start state’ in those
generators.) Since any user-defined states have already been incorporated into
the start state by the generator, no additional run-time mechanism is required
to support this feature of description languages.” The beginning state (called
INITIAL in flex) is stored as bos's state.

In our example, there are two states, one for handling preprocessor directive
lines and another (the normal state) for processing tokens in the base lan-
guage. The presence of a ‘#' character after a newline with only whitespace or
comments between them signals the start of a preprocessor directive. Once in
the preprocessor directive state, another newline signals the shift back to the
normal state.

The relationship between patterns in the lexical description and lexemes
is not necessarily straightforward. Multiple pattern matches (and their cor-
responding rule invocations) may be required to construct a single token, in
which case only the state at the conclusion of the final rule needs to be pre-
served. Multiple tokens may also be constructed from the text matching a
single pattern, in which case all the tokens involved are returned simultane-
ously from more_tokens. The alternative, returning a single token for each
invocation of the batch lexer, requires an additional interface function to in-

7One feature provided by some lexical description languages is the ability to define patterns
exclusive to a particular user-defined state. If a particular pattern can occur in multiple, exclusive
states and the state no longer matches, a token must be re-created in order to re-label its state.
While this behavior is optimal with respect to the description (and the techniques of Section 7.1
can restore the original token), improved incrementality would be obtained by introducing a third
state for the common element(s).
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form the incremental service when the batch lexer has reached a consistent
stopping point.

Arbitrary code may be used during the construction of a single token. This
is useful in constructing tokens that have non-regular syntax, such as nesting
comments, or for complex patterns where standard library code exists, such
as floating point constants. However, rules that construct (pieces of) differ-
ent tokens may not communicate except by contextual dependencies that are
reflected in the lexical description.2 Doing so would introduce additional de-
pendencies not visible to the incremental run-time service, and would thus
result in incorrect incremental behavior.

This restriction can be relaxed by permitting a contiguous sequence of to-
kens to be treated as a single entity for the purposes of incrementality. The
incremental lexer will be unable to restart analysis within such a sequence
and it will require the batch lexer to reconstruct it (when necessary) in its
entirety. However, as long as such regions are kept reasonably short, this rep-
resents a useful technique for constructing contiguous token sequences using
unrestricted techniques without a significant loss of incremental performance.
Each token in such a sequence except the final one will possess a special state
value that indicates it is not a valid starting position.

3.6 Computing and Using Lookback Counts

To construct a token, the lexer must scan at least the characters of that token'’s
own lexeme. In some cases, this is sufficient—parentheses are a simple exam-
ple where the text of the token is sufficient to determine its right boundary. In
many cases, however, at least one additional character beyond the end of the
lexeme must be examined to detect that the lexeme is complete. For example,
identifiers in most programming languages can be of arbitrary length, and the
lexer can only be certain that an identifier is complete when it encounters a
character not in the legal set of identifier spellings. In general it is not even
possible to place a compile-time limit on the number of characters (or even
the resulting number of tokens) of lookahead involved; doing so will artificially
restrict the set of languages which can be described or the instances of those
languages that will exhibit correct incremental behavior.

In a batch environment, the need to support lookahead impacts buffering
and 1/0 operations but not token construction. In an incremental setting with
a persistent token stream, lookaheads must be preserved within tokens, be-
cause this information helps to provide the link between modifications made
by the user and the set of tokens that require re-analysis when the incremental
lexer is next invoked. Previous approaches have all used a simple, restricted
scheme: a token's lookahead set is required to lie within its own lexeme and
the characters of the following token. This results in a trivial relationship be-
tween modifications and re-analysis: each modified token and each token that

8Either left context, in the form of a specific state, or right context, in the form of lookahead as
discussed in the next section. Long-range dependencies such as name binding [Horwitz 1985] are
outside the purview of incremental lexing, and we will never mean this type of relationship when
we use the term ‘contextual dependency’.
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lookahead
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current (new) !
e 0

previous (old) D ‘

token stream

construction  read
location location

Fig. 5. The determine of lookahead from the activities of the batch lexer. By monitoring the
difference between the construction location (the start of a re-lexed token) and the read location
(the rightmost character examined by the batch lexer through a call to next_char), the incremental
run-time system can determine the length of the character read set. The lookahead is the difference
between this value and the length of the token. (Because the token boundaries in the new stream
are not necessarily related to those in the previous stream, locations are < token, offset > pairs.)

— lookahead sets
\n—— (in characters)
- 7* o
#
—

if

lookback counts (

(in tokens) 11 2 30 11

Fig. 6. The relation between the characters read to produce a token and the resulting token look-
back counts. Lookahead sets are shown in the figure as horizontal lines. During the dependency
update phase, lookahead sets are converted into token lookback counts, shown at the bottom of the
figure.

precedes a modified token requires re-analysis.

However, natural descriptions of real programming languages, including C
and C++, sometimes require lookaheads that span multiple tokens. Our ap-
proach supports descriptions requiring arbitrary lookahead by computing and
maintaining dynamic dependency information. These contextual dependencies
are stored within the tokens themselves, using the lookahead and lookback
fields shown in Figure 3.

The lookahead is computed by monitoring the batch lexer’s calls to next_char
and the length of the resulting tokens it produces.® The batch machine itself
does not need to be modified in any way. The character read set is the number
of characters read by the batch lexing machine during the construction of a
token; by subtracting the length of its own lexeme, we derive the character
lookahead—whenever a character in this range is disturbed through textual
editing (insertions, deletions, or overwrites) or structural editing, the token just
constructed must be re-analyzed, since it might not be constructed in the same
fashion given the possibly-changed text to the right of its lexeme. Figure 5
illustrates how the incremental run-time system computes a token'’s lookahead
set from the construction and read locations in the previous version of the token
stream.

9Some generators require a special option to indicate that minimal lookahead is to be used. Such
flags should be used to generate the best possible performance in an incremental setting.
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Token lookback counts are used to summarize and invert the information
contained in the character lookaheads of previous tokens. Token lookback
counts represent the previous tokens that are dependent on one more more
characters of a given token: if a token t has a lookahead that reaches y, then
y's lookback is sufficient to reach t. Lookback counts are necessary as well
as sufficient: no lookback count can be reduced without violating correctness.
Figure 6 demonstrates the relationship between lexemes, lookahead sets, and
lookback counts in our running example.

The advantage of permitting unbounded token lookahead is the ability to
reuse natural lexical descriptions in an incremental setting. However, most
token lookahead and lookback counts in a program written in a conventional
programming language will be zero or one. We can choose conservative implicit
values for the character lookahead and token lookback values that cover the
vast majority of tokens. This reduces the space requirement to the constant
lookback case without loss of performance—at worst we will re-lex a fixed
number of additional tokens for each modified token sequence. (The techniques
of Section 7.1 can prevent loss of conceptually retained tokens in this case, so
there is truly no penalty for the implicit representation.) The exceptional cases
can be represented via an associative data structure. In the case that inter-
token states are predominantly a single value, a similar technique may used
to effectively eliminate the entire space cost of incrementality.

The computation of lookback values requires special handling for eos. Even
though it possesses no explicit lexeme, the detection that no further text is
present represents a type of lookahead information. Thus, we treat eos as if it
contained a single character; any preceding tokens which read and detect the
end-of-stream condition include this pseudo-character in their lookahead sets.
The translation to a lookback count is then treated uniformly by the algorithm
in Section 6.

3.7 Overview of Algorithm

Incremental lexing begins with a tree where all the nested and local changes
have been identified; together these form a set of paths defining an embedded
tree structure within the larger tree. There are three main stages to the
analysis. Inthe first (marking) stage, the dynamic dependencies of the previous
token stream are combined with the embedded change tree and used to discover
the prefix set, the set of tokens that begin each contiguous region requiring
re-lexing. Having expanded the embedded change tree to incorporate this
lookback set, the second (lexing) stage then traverses each out-of-date region
until the new and old token sequences once again coincide. In the third stage,
dependency updating, the embedded change tree (updated once again from
the results of the second stage) is traversed a final time to update dynamic
dependencies for each token created by phase two and any unchanged tokens
that were examined. (If the range of inter-token dependencies is fixed to an
a priori value, the final stage is simply omitted.)

The three passes are conceptually distinct, although they could be applied si-
multaneously during a single traversal of the tree. Our prototype uses explicit
passes both for simplicity of implementation and because a single pass imple-
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mentation would greatly complicate the interaction with incremental parsing.
Separating the passes does not degrade asymptotic or practical performance
and follows the same control structure of other analysis/transformation tools.

Our incremental lexing algorithm can be used as a subroutine of incremental
parsing, producing a single token (or atomic token sequence) on each call.?
Thus the interface to the incremental lexer supports starting and stopping on
a region-by-region basis. The only assumption the incremental lexer makes
is that, from its perspective, regions are processed left-to-right. (If the driver
routine has a priori knowledge that changes to the regions cannot conflict, then
this restriction may be relaxed.) The client interface to the incremental lexer
consists of the subroutines in Figure 11.

4. MARKING PHASE

In order to efficiently re-lex the token stream, we need to know the starting
point of each outdated region. These regions comprise the tokens that have re-
ceived direct modifications (textual edits) and tokens that have been affected by
modification of the tree structure. The affected regions also include tokens that
are dependent upon characters in the modified tokens (tokens with lookahead
sets that reach one or more modified tokens).

4.1 Effect of Textual and Structural Editing on Dependencies

It is easy to see how a textual edit affects token dependencies: if a character
is inserted to, deleted from, or overwritten within a token, then the previous
lookback™ tokens must be considered suspect. Figure 7 illustrates the partic-
ular case of our running example.** No interaction with the incremental lexer
is required at the time of the edit; when lexing is next requested, the current
structure of the tree is used in conjunction with the lookback counts computed
during the last-lexed version to determine the extent of the effect.

Structural edits are more complex to handle (and also complicate the situa-
tion for text editing by potentially re-arranging the order of tokens). While it
is possible to treat a structural edit as a textual edit that modifies every token
in the yield of the subtree, this would require O(N) time to analyze a subtree
containing N tokens. Instead, we perform a precise computation of the possible
effect of the change through history-based dependency analysis.

Each structural operation is treated as a replacement; insertions replace
a sentinel (completing production) with new material and deletions replace a
subtree with a sentinel. The dependency analysis for a structural edit is similar
to a modification of the first character in the subtree being removed and the
first character following the subtree. More specifically, for each replacement

10As is the case with the internal operation of the incremental lexer, the parser’s update operations
occur to a logically separate tree from its read operations; this prevents any disruption to the lexer
as the parser re-writes tree structure and vice-versa.

11glightly greater theoretical precision can be achieved by also using the lookahead fields: not
all the tokens in the lookback set necessarily reach the modified token, and those that do reach
it typically depend only on its left edge. However, this level of precision does not improve the
asymptotic or practical performance, and requires knowledge of intra-lexeme modification sites.
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WS
\n
BEAR

Fig. 7. Effects of textual editing. This figure illustrates the marking process when the # character
is deleted in our running example. The token containing the modification and the path from it
to the root of the tree are shown in black. The lookback count in the modified PND token is used
by the marking routine to discover the set of tokens affected by this change; these tokens and the
additional interior tree nodes required to locate them are shown in grey. The bottom row in each
token contains the preserved state (‘P’ denotes the preprocessor directive state), lookahead count,
and lookback count while marking is in progress.

Fig. 8. The effect of subtree replacement on incremental lexical
analysis. For each replaced subtree, the lookback count in its
leading token is used to determine the set of tokens affected by the
edit. Both the structural traversal and the dependency analysis
are with respect to the last-lexed version. The same analysis is
done for the token immediately following the replaced subtree, in
order to include tokens within the subtree that are now out-of-
date. (For insertions, the first step can be skipped; for deletions
the latter step.)

new
subtree

subtree [\

point, the first token in the subtree (if one exists and if it existed in the last-
lexed version of the tree) is used to invalidate tokens with lookahead sets
that reached it. The tokens affected are determined by traversing the last-
lexed token stream, not the current one. The token following the subtree
replacement point is treated similarly. No other tokens can be affected by this
subtree replacement since their lookahead sets were not disturbed by it. The
effect of structural editing is shown schematically in Figure 8.

4.2 Marking Algorithm

Marking is the process of discovering the prefix set, the set of tokens that
prefix each region requiring action by the incremental lexer. The input to this
phase is a tree where all tokens and internal nodes modified since the last
analysis are marked. (We refer to the modified nodes as ‘implicitly’ marked
and the addition tokens discovered by this phase as ‘explicitly’ marked.) In
order to efficiently locate the modified areas of the tree, each interior node on a
path to one or more modified nodes is identified as possessing nested changes;
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Locate all the edit sites within node.
Call mark_from() on each edited terminal and the boundaries of each structural edit.
void apply_marking (NODE *node) {
if (is_token(node) && node->text_changes(last_lexed))
mark_from(node); Handle textual changes.
else {
Handle structural changes.
if (node->child_changes(last_lexed))
for (int i = 0; i < node->arity(); ++i) {
NODE *0ld_child = node->child(i, last_lexed);
if (old_child != node->child(i)) {
Mark first token not earlier than the leading edge of the original subtree.
mark_from(first_token(old_child, last_lexed));
Mark first token after the original subtree.
mark_from(first_token_after(old_child, last_lexed));
}
¥
Recursively process any edits within this subtree.
if (node->nested_changes(last_lexed))
for (int i = 0; i < node->arity(); ++i)
apply_marking(node->child(i));

Fig. 9. Driving routine for marking algorithm. This routine locates all modifications (both textual
and structural) applied since the previous invocation of lexical analysis. first_token returns the
first token in the yield of its argument concatenated with the remainder of the token stream.
first_token_after is similar, but returns instead the first token after the yield of its argument
node. All functions that access structure have an optional argument to specify the version of the
tree used for the query.

additional nested changes are added as needed for later passes to locate the
explicitly marked tokens.

The driver for the marking phase traverses an optimal path through the tree
that reaches each edited site. For internal nodes (structural modifications), it
first locates the tokens that may have been affected by the subtree replacement.
Each implicitly marked token is then passed to a marking routine that discovers
additional tokens dependent upon the changed material by using the dynamic
dependency information in the lookback fields of the modified tokens.

Since the state field of each token records the batch lexer’s internal state at
the completion of a rule, the incremental lexer will use the token before the first
affected token in each region to pass to the batch lexer's set_state function.
One complication is that only startable tokens (the final token of each sequence
returned by more_tokens) can serve as valid starting points. For each marked
token, we must therefore step backwards in the current version of the tree
until we find a node whose state field indicates a valid point for re-initializing
the batch lexing machine. (In practice, this is typically the previous node.)
Because the nodes marked by mark_from are not necessarily contiguous in the
current tree, ensure_startable must be applied to each marked node. Figure 9
contains the entry point to the marking phase.

The following theorem demonstrates the correctness of the marking phase
(the extension to multiple-token sequences is straightforward).
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Explicitly mark tokens dependent upon tok for re-lexing.
This backup occurs in the last-lexed tree.
void mark_from (TOKEN *tok) {
if (ltok->exists() || !tok->exists(last_lexed)) return;
ensure_startable(tok);
Check everything in its lookback set.
for (int ov = tok->lookback; ov > 0; --ov) {
tok = previous_token(tok, last_lexed);
if (tok == bos) return;
if ('tok->exists() || marked(tok)) continue;
mark(tok) ;
ensure_startable(tok);
¥
}

Ensure that we have a valid state to re-start the lexer here.
This backup occurs in the current tree.
void ensure_startable (TOKEN *tok) {
for (TOKEN *tok2 = previous_token(tok);
Istartable_state(tok2) && 'marked(tok2);
tok2 = previous_token(tok2);
mark (tok2);

Fig. 10. Marking routine. All tokens from the last-lexed version that are still present in the token
stream and that read one or more characters in tok’s lexeme are explicitly marked. In addition, the
algorithm ensures that the batch lexer can be restarted at the beginning of each outdated region
by calling ensure_startable for both tok and any explicitly marked tokens.

THEOREM 4.1. The marking algorithm marks all and only those tokens re-
quiring re-analysis that are not themselves modified.

PrROOF. For the sufficiency test, we proceed by contradiction. Suppose there
exists a token t with at least one modified character in its lookahead set. If the
character is within its own lexeme, then t is marked by the modification itself. If
the character was in a different token modified through a textual edit, then the
token that contained it must have had an lookback field at least large enough
to encompass t, and mark_from would thus have marked t. The only remaining
possibility is that the altered lookahead arose through a structural edit. In
this case t was separated from a token containing one or more characters in
its lookahead set through a subtree replacement. Without loss of generality,
assume that t was to the left of the original replaced subtree in the last-lexed
version. Since t's lookahead set extends into the left edge of the subtree, the
marking algorithm must have included t in the set of tokens marked when this
structural edit point was processed. Hence t is actually marked.

For the necessary test, we merely observe that any explicitly marked token
had at least one character in its lookahead set modified through one or more
editing operations applied since the previous lexical analysis. O

With regard to running time, marking per se examines only old tokens con-
taining affected characters. It is thus linear in the number of affected charac-
ters and affected tokens and clearly optimal.
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5. LEXING PHASE

Lexing is the process of repairing a contiguous region of affected characters by
reading the (possibly-changed) lexemes from the previous token stream and
invoking the batch lexing machine to re-create that portion of the new token
stream. Lexing is applied to each outdated region in turn, beginning with the
next token in the prefix set not yet visited. In order to stop lexing a region, we
must ensure that the construction location (Figure 5) is at the beginning of an
unmarked token and that the last newly-lexed token contains a startable state
matching the state in the previous token of the previous stream.

The routines comprising the lexing pass are shown in Figure 11. These
routines can also be called directly by an incremental parser. Figure 12 illus-
trates the required use of these routines by implementing the lexing phase as
a standalone operation.

THEOREM 5.1. At the conclusion of the lexing phase, the token stream is iden-
tical to the token stream that would result from executing the same batch ma-
chine on the concatenation of the lexemes. Furthermore, each token records the
state of the batch lexing machine at the point of the token'’s construction.

PrROOF. The correctness of the marking phase and batch lexer are assumed.
We proceed by induction over the token stream as it exists immediately prior to
the start of the lexing phase. The base case is simple: the beginning of stream
markers and initial lexical states are clearly the same in both the batch and
the incremental streams.

For the inductive case, assume that the lexemes of the preceding N — 1 tokens
have been correctly lexed and that the internal state of the batch lexer is the
same in both cases. If the current token is unmarked, then the state of both
machines is equivalent, the characters of the token's lexeme and lookahead set
are unchanged from the previous invocation, and thus the old token may be
safely reused (and the state with which it is labeled corresponds to the state of
the batch machine at the conclusion of the rule creating the token).

If the current token is marked, then the batch lexers will read the same set of
characters in the same state, and thus produce the same stream of tokens until
the stopping condition obtains. At this point, the next character to be consumed
and the state of the batch lexing machine correspond to the ‘leading edge’ of an
unmarked token in the old stream, completing the inductive step. O

This phase touches only old tokens that are marked, for which the starting
state or offset has been changed, or that are part of a previous atomic sequence.
The number of invocations of the batch lexer (and number of tokens examined
in the new stream) is therefore optimal and is clearly linear in the total number
of affected characters.

6. LOOKBACK UPDATE PHASE

When the lexing phase completes, all the fields in each token in the stream
are correct with the exception of the lookback counts. The lookback field will
be undefined for each token produced by either first_token Or next_token. In
addition, newly-constructed tokens may have read characters from lexemes in
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Begin incrementally lexing a new region starting at tok.

TOKEN *first_new_token (TOKEN *tok) {
read_token = tok; read_offset = 0;
if (tok == bos) batch_lexer->set_state(INITIAL_STATE);
else batch_lexer->set_state(previous_token(tok)->state);
token_list = 0;
return next_new_token();

}

Return the next re-lexed token.
TOKEN *next_new_token () {
if (token_list == ()) token_list = batch_lexer->more_tokens();
for each tok in token_list {
if (tok is last element) tok->state = batch_lexer->get_state();
else tok->state = unstartable_state;
advance(construction_loc, tok->length);
tok->lookahead = delta_in_chars(read_loc, construction_loc);
}
return last_token = remove first token in token_list;

}

Determine when previous and current token streams merge again.
bool can_stop_lexing () {

return
token_list == () && construction_loc.offset == 0 &&
'marked(construction_loc.tok) && is_startable(last_token->state) &&
last_token->state == previous_token(construction_loc.tok, previous)—>state;

}

Incremental run-time service provides this to batch lexer to read from
lexemes in the previous version of the token stream.
int next_char () {
while (read_offset == read_token->length && read_token != eos) {
read_token = next_token(read_token, previous);
read_offset = 0;

¥
if (read_token == eos) return -1;
return read_token->lexeme[read_offset++];

}

Fig. 11. Lexing algorithm. The input to this algorithm is a marked token stream. The outputis a
(possibly changed) token stream that is identical to one produced by executing the batch lexer on
the concatenation of the previous stream’s lexemes. The next_subtree function returns the node
following its argument’s rightmost descendant in a DFS ordering.
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Restore consistency to the entire token stream.
(Operations to incorporate tokens into the tree structure are not shown.)
void lex_phase () {
for (TOKEN *tok = find_next_region(root);
tok != eos;
tok = find_next_region(tok)) {
tok = first_new_token(tok);
while (!'can_stop_lexing()) tok = next_new_token(tok);
}
}

Find the next marked token within or after node.
TOKEN *find_next_region (NODE #*node) {
if (node == eos || (is_token(node) && marked(node))) return (TOKEN*)node;
if (node->nested_changes())
return find_next_region(node->child(0));
return find_next_region(next_subtree(node));

}

Fig. 12. Driver for the lexing phase, when used in a standalone fashion. Incremental lexing can be
intermixed with parsing by having the incremental parser call the routines in Figure 11 directly.

unchanged tokens. (Conversely, they may have failed to read as far as previous
analyses did into the unchanged region.) The lookback phase handles both
types of updates.'?

6.1 Algorithm

During lexing, the character lookahead set for each token is preserved in its
lookahead field at the time the token is constructed. The lookback update phase
consists of transforming these character lookahead counts into token lookback
counts. The algorithm’s central data structure is a character lookahead list that
keeps track of multiple outstanding lookaheads. As each token is processed,
its character lookahead is added to this list and any lookaheads that terminate
within this token’s lexeme are removed from the list.

The lookahead sets for our running example are shown graphically in Fig-
ure 6. When the comment token is processed, one lookahead is removed (the
preceding whitespace token) and one remains (the newline token). The com-
ment token itself has no lookahead, so no entries are added. Figure 13 shows
the lookahead list immediately after processing each token.

Each region is processed in three parts: a bootstrap section, a re-lexed sec-
tion, and a sync section. For the middle section, composed of the re-lexed
tokens, the algorithm computes the lookback count for the token based on the
contents of the lookahead list. Then each lookahead set in the list is advanced
by the length of the token’s lexeme, and the token'’s own lookahead is added.

In order to maintain the invariant that the lookahead list contains all and
only lookahead sets from the current version of the token stream that reach

121t is possible to perform this update in parallel with the lexing phase, but doing so greatly
complicates the algorithm. When lexing is performed in parallel with incremental parsing, on-
line dependency updating is even more difficult, since the new tree structure is fragmented until
parsing completes.
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Region Token Lexeme Length Lookahead list

re-lexed WSy \n 1 < WSy1,28,0 >
WS> U 1 < WS81,27,1 > < WSp,1,0 >
CMNT /*.. . %/ 25 < WS1,2,2 >
WS3 u 1 <WS1,1,3 > < WS3,1,0 >
KW_IF if 2 < KW_IF,1,0 >
syncing  LPAREN ( 1 < LPAREN, 0,0 >

Fig. 13. Updating lookback counts in a section of the token stream. The bootstrap section is
empty in our running example, so processing begins with the first re-lexed token (the newline).
We maintain the invariant that the list of lookahead sets contains all and only the lookaheads that
reach the lexeme of the current token. When we finish processing lookaheads for re-lexed tokens
and find a match between the computed and stored lookback counts, the region is complete. In the
example, this occurs when the left parenthesis is encountered.

Find and update each modified region of tokens.
void update_lookbacks () {
NODE *node = root;
while (node)
if (is_token(node)) {
TOKEN *tok = (TOKEN*)node;
if (tok was re-lexed) node = fix_lookbacks(tok);
else node = next_subtree(node);

¥
else if (node->nested_changes()) node = node->child(0);
else node = next_subtree(node);

Fig. 14. Driver routine for lookback recomputation.

the token being processed, we may need to initialize the lookahead list from
lookaheads in tokens that precede the first re-lexed token. To determine which
tokens are included in the bootstrap section, we first note that the token pre-
ceding the first (re-lexed) token in the region must exist in the current, previ-
ous, and last-lexed version of the token stream. The token that follows it in
the last-lexed version contains the relevant lookback count, and we continue
adding preceding tokens to the bootstrap section until this count is exhausted
or until we discover a point where the token streams differ (indicating that
tokens to the left have already been processed).

The symmetric problem arises following the re-lexed tokens: because their
lookahead sets may have penetrated (or now fail to penetrate) unchanged to-
kens that follow, we must continue updating lookbacks until we reach eos or
the next re-lexed token or until we meet two conditions simultaneously: the
lookback list contains no elements from re-lexed tokens (which would imply
that we haven't finished updating all the relevant lookback counts) and the
lookback computed from the lookahead list is the same as that stored in the
token being processed. The latter condition is necessary to handle shrinking
lookaheads from one version of the token stream to the next.

Figure 14 contains the driver that locates each region requiring lookback
processing. The actual updating is performed by the fix_lookbacks routine,
shown in Figure 15.
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Process a re-lexed region starting at tok.
TOKEN *fix_lookbacks (TOKEN *tok) {
la_set = (;
if (tok == bos) goto L;
Extract lookback count (if different in current version, use old value).
int 1b = next_token(previous_token(tok), last_lexed)->lookback;
TOKEN *boot_tok = tok;
while (--1b > 0 &&
previous_token(boot_tok, last_lexed) == previous_token(boot_tok, previous) &&
previous_token(boot_tok) is not re-lexed)
boot_tok = previous_token(boot_tok);
Initialize the lookahead set from the bootstrap region.
while (boot_tok '= tok) {
la_set.advance(tok->length);
la_set.add_item(tok);
tok = next_token(tok);
}
L: do {
Set the lookback for re-lexed tokens.
while (tok was re-lexed) {
tok->lookback = la_set.compute_lookback();
la_set.advance(tok->length);
la_set.add_item(tok);
tok = next_token(tok);
}
Symmetric to bootstrap: process unmodified tokens reached by lookahead from re-lexed area.
while (tok != eos && tok was not re-lexed && !la_set.all_items_discardable() &&
tok->lookback != la_set.compute_lookback()) {
tok->lookback = la_set.compute_lookback();
la_set.advance(tok->length);
la_set.add_item(tok);
tok = next_token(tok);
}
} while (tok was re-lexed);
return tok; Return first clean token or eos to caller.
}

Fig. 15. Update algorithm for a contiguous range of modified tokens. The driver routine is shown
in Figure 14. The operations on the list of lookaheads are defined in Figure 16.

advance (int offset)
replace <tok,cal,cnt> in list with <tok,cla-offset,cnt+1>

int compute_lookback ()
remove <tok,cla,cnt> s.t. cla <= 0 from list
if (list == ()) return 0;

else return max cnt | <tok,cla,cnt> in list

add_item (TOKEN *tok)
add <tok,tok->lookahead,0> to list

bool all_items_discardable ()
V <tok,cla,cnt> in list, tok is not re-lexed

Fig. 16. Functions to update the lookahead list during lookback processing.
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THEOREM 6.1. At the conclusion of the lookback update phase, each token tin
the new stream has a lookback value b such that the earliest token in the stream
with a lookahead extending into t is the b™ previous token.

PrRooOF. Consider the tokens processed by a call to fix_lookbacks. The search
for the left edge of the bootstrap section is terminated either by the earliest
token whose lookahead penetrates the current token, by a token that was re-
lexed, or by bos. In the first case, the local token stream is the same in the
current, previous, and last-lexed versions, so the lookback count itemized all
and only the tokens with relevant lookaheads. In the latter case, the re-lexed
token'’s lookahead has already been processed in full by induction, so again the
lookahead list contains all and only the relevant lookahead sets.!®

We assume the correctness of the lookahead list operations; the lookback
count assigned to each re-lexed token is therefore necessary and sufficient
by the invariant that the lookahead list contains all and only the lookahead
sets reaching the current token. The processing of each re-lexed token clearly
maintains that invariant.

For unchanged tokens to the right of the re-lexed section that include char-
acters read by one or more re-lexed tokens, the invariant on the lookahead
list's contents remains unchanged. We now examine the stopping condition.
The cases of encountering a re-lexed token or eos are trivially correct. The
remaining case requires two conditions to hold simultaneously: the lookahead
list consists entirely of tokens that have not been re-lexed, and the lookback
count to be assigned to the current token matches its stored value. This is
clearly sufficient, since the lookback count computed for the next token would
necessarily match the value of its lookback field. It is also necessary, since
a violation of either condition can easily be seen to result in cases where the
lookback counts are insufficient or over-estimated.

When the outer loop in fix_lookbacks terminates, the token returned pos-
sesses a lookback count that is necessary, sufficient, and unchanged from its
last-lexed value (or is eos). This ensures that the unchanged token sequence
terminated by the next call to fix_lookbacks possesses the same property. O

COROLLARY 6.2. Lookback processing examines the minimal number of to-
kens.

Lookback processing is clearly linear in the number of affected tokens and
characters; the overhead of tree traversal is the same as in the previous phases.

7. INCREMENTAL LEXICAL ANALYSIS IN AN ISDE

Batch lexical analysis is useful in a number of situations, and incrementality
is applicable to several of these. Our primary interest, however, is the use of
incremental lexical analysis as a component of an ISDE. In this case the token

131t is true that not all of the tokens in the bootstrap section necessarily have lookaheads reaching
the first character of the first re-lexed token in the region: as always, a lookback count represents
the union of of lookahead sets, and one or more earlier tokens may have been changed. However,
the bootstrap region’s processing is sufficient and, given that the only tokens it enters are ones
that could possess relevant lookaheads, necessary.
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stream is part of the persistent (structural) program representation, and an
incremental parsing algorithm is the ‘client’ of the incremental lexer.

The algorithms we have discussed so far can be applied without change in
this setting. In this section we describe three additional topics primarily of
interest within an ISDE: the preservation of information through token reuse,
the reversibility of the transformation induced by incremental lexical analysis,
and the issue of error detection and recovery.

7.1 Token Reuse

The analysis and transformational tools in an ISDE should be designed to reuse
physical nodes whenever they are logically unchanged: the maintenance of as-
sociated information can be implemented most efficiently when the physical
identity of an item matches its conceptual identity. Token reuse also improves
performance because reuse calculation is cheap—far cheaper than additional
incremental reevaluation by semantic analysis and other tools. Token reuse
thus decreases the amount of total work performed in response to the origi-
nal program modifications. It also has a strong impact on the user interface,
because inexact visual indications of updates are confusing (they violate user
intuition) and because unneeded token reconstruction loses annotations au-
thored by the user (or by previously-applied tools that are not incremental).

Because our incremental lexical analysis algorithm is optimal, it intrinsically
reuses that portion of the token stream provably unaffected by the user’s modi-
fications. However, any analysis is inherently conservative, and many common
modifications result in re-lexing tokens that are conceptually unchanged, cre-
ating new tokens isomorphic to the old ones. Other times some component of a
token actually has changed, but is not a part of the user model and the token
should thus be reused. This latter type of reuse occurs in our running example,
where the state fields of the re-lexed tokens are altered, but the user-visible
information (location, type, and lexeme of the tokens) is unchanged.

We will consider two different approaches to reuse.* The first, bottom-up
reuse, is computed directly by the incremental lexer as it operates. In our
running example, it is easy to see that the re-lexed tokens can be reused: only
the state fields will change from the previous version of the stream to the new
version.

More generally, we compute bottom-up reuse by examining tokens in the
previous version of the stream that would not otherwise be incorporated in
the new version. When the type of a newly-constructed token matches the
type of a token being eliminated, the old token can be reused by copying the
lexeme, state, and lookahead fields from the new token (the new token is then
discarded). The algorithm used by our prototype is shown in Figure 17.

Bottom-up reuse captures the reuse cases that can be easily discovered using
only local information, and it is both efficient and simple to implement. Bottom-
up reuse is also necessary to allow the parser to reuse interior nodes—it is
possible to exhibit situations where bottom-up reuse by the incremental lexer

14Node reuse by the incremental parser, including a definition of optimality, can be found in Wagner
and Graham [1996a].
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bool bottom_up_reuse_test (TOKEN *tok) {
if (construction_loc.tok->type == tok->type &&
construction_loc.tok != last_reused_token &&
construction_loc.tok != eos) {
construction_loc.tok->state = tok->state;
construction_loc.tok->lexeme = tok->lexeme;
construction_loc.tok->lookahead = tok->lookahead;
Treat this token as re-lexed during lookback update phase.
force_lookback_recomputation(construction_loc.tok);
last_reused_token = construction_loc.tok;
return true;
}
return false;

}

Fig. 17. Computing bottom-up reuse during incremental lexing. The next_new_token function
is modified to apply this test to all tokens passed over when updating the construction location
through calls to advance. If an old token can be reused, the new information is copied into its
fields. Out-of-order reuse could also be attempted, but top-down reuse is much more effective at
performing such global comparisons and is easier to implement.

ID PLUS ID

original a + b
tokens:
after
deletions:

after a+b

re-typing:

bottom-up a + b
reuse:

top-down a + b
reuse:

Fig. 18. Example of token reuse. In this scenario, the lexemes from three contiguous tokens are
textually deleted and then re-typed (a common occurrence during editing). After re-lexing with
only bottom-up reuse, the initial token in the sequence will be reused, but the remaining two
tokens will be re-created; any annotations associated with them would then be lost. Applying top-
down reuse results in the restoration of all three tokens. In more complicated examples involving
incremental parsing, bottom-up and top-down reuse must be used in combination to achieve the
best results.

is necessary to ‘seed’ bottom-up reuse of interior tree structure. However, the
inability to consider global comparisons between the old and new versions of
the token stream can result in missed opportunities for reuse. (Figure 18
illustrates a case where bottom-up reuse alone is insufficient.) We therefore
apply another type of reuse based on structural comparisons, referred to as
top-down reuse.

Unlike bottom-up reuse, which is performed in parallel with incremental
lexing, top-down reuse is performed as a fourth pass, after incremental lexing
and parsing have completed. It begins by applying a reachability analysis,
shown in Figure 19, to discover deleted nodes: nodes present in the previous
version of the tree that have been eliminated in the new version. The actual
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Find root of each deleted substructure.
void process_deletions (NODE *node) {
if (!node->created_in() &&
node->child_changes(previous))
for (int i = 0, arity = node->arity(); i < arity; i++) {
NODE #0ld_kid = node->child(i, previous);
if (old_kid->exists() && 'node->has_child(old_kid) &&
(old_kid->parent() == NULL || 'old_kid->in_tree()))
0ld_kid->handle_deletion();
¥
if (node->nested_changes(previous))
for (int i = 0; i < node->arity(); ++i)
process_deletions(node->child(i));

}

Mark contiguous deleted nodes.
void handle_deletion (NODE #*node) {
int i;
Copy children so we can discard this node.
NODE *kids[node->arity()];
for (i = 0; i < node->arity(); ++i) kids[i] = node->child(i);
mark_deleted(node);
Iterate over kids, checking each one for deletion.
for (i = 0; i < node->arity(); ++i)
if (kids[i] && kids[i]->exists())
if (kids[i]->parent() == NULL || kids[i]->parent() == node)
kids[i]->handle_deletion();
else if (!kids[i]->in_tree()) kids[i]->handle_deletion();
}

A node is in the a version of a tree if a retraceable path to the root exists.
bool in_tree (NODE *node, VERSION v) {
if ('node->exists(v)) return false;
NODE *p = node->parent(v);
for (; p && p->exists(v) && parent->has_child(node, v); p = p->parent(v));
node = p;
return node == root;

Fig. 19. Reachability analysis for deleted structure. This algorithm locates unreachable nodes—
nodes present in the previous version of the tree but not in the current version. The search can be
performed in O(d + slg N) steps, for d deleted nodes, s modification sites, and N total nodes in the
new tree.
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Compute top-down reuse for the entire tree.

top_down_reuse () {
process_deletions(root);
top_down_reuse_traversal(root);

}

Apply a localized top-down reuse check at each modification site.
top_down_reuse_traversal (NODE *node) {
if (node->child_changes() && node->exists(previous))
reuse_isomorphic_structure(node);
else if (node->nested_changes())
for (int i = 0; i < node->arity(); ++i)
top_down_reuse_traversal(child);

}

Restore reuse paths descending from node.
reuse_isomorphic_structure (NODE #*node) {
for (int i = 0; i < node->arity(); i++) {
NODE #*child_now = node->child(i);
NODE *child_before = node->child(i, previous);
if (child_now->is_new() && is_deleted(child_before) &&
child_now->type == child_before->type) {
child_before->undelete();
replace_with(child_now, child_before);
reuse_isomorphic_structure(child_before);
} else if (child_now->nested_changes())
top_down_reuse_traversal(child_now);

Fig. 20. Computing top-down reuse. After locating unreachable nodes using the algorithm in
Figure 19, this algorithm visits each modification site and attempts to replace newly-created nodes
with discarded nodes along descending paths. The replace_with function copies the values in the
fields of the new token to the corresponding fields in the reused token.
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reuse is performed by the algorithm in Figure 20: for each modified interior
node, it attempts to restore isomorphic structure in its descendants. Eventually
such a path can lead to a token, which is tested and restored to the tree in the
same fashion as interior nodes. In combination, the two types of reuse restore
virtually every token that the user would consider unchanged.

7.2 Reversibility

The transformation induced by incremental language analysis, including lex-
ical analysis, can be considered as an update to the program, just as textual
or structural editing represent ‘transformations’. In a software development
environment, the user operations will be undoable, and it is desirable for the
language-based transformations to be undoable as well [Wagner and Graham
1995]. This makes the user interface more comprehensible: every update
can be undone using the same interface and every transformation possesses
the same semantics. Since we use low-level history services to enable efficient
analysis in the first place, it is only natural that they should record the resulting
transformation in a manner that is uniform with user-supplied modifications.

To enable efficient reversibility of the incremental lexing operation, all we
need to do is ensure that versions of the token stream other than the current
one can be selected by the history services without violating correctness. In
a typical representation, the history services will already be versioning the
lexeme and parent link of each token (the type field is read-only information,
and therefore is the same in every version of the token). To this we must add
the incremental information: the state, lookahead, and lookback fields.!® (As
mentioned in Section 3.6, explicit representation of some or all of this material
can usually be avoided.) With this done, the same history services can be used
to alter the current version of the program without requiring any involvement
from the incremental lexer.

7.3 Error Recovery

As mentioned previously, there is an important distinction between inconsis-
tency, which is a transient state where one or more modifications have ren-
dered the token/lexeme relationship potentially invalid within some regions,
and errors, which indicate character sequences that are not admitted by the
language definition. Our model is one where both valid and invalid editing
operations are permitted, with the various analysis/transformation tools dis-
covering the maximum amount of information in the presence of any errors
that arise.’® Errors may thus also include lexically-valid but syntactically (or

15The lookback updating stage already requires that we retain access to the last-lexed value of
lookback counts until that pass has completed.

16 Another solution is to prevent erroneous modifications from being made. While we feel that
restrictive, generative approaches to software development are unnecessary and undesirable, the
algorithms described here can be easily applied to this editing model as well. By running the lexical
analysis algorithm in a read-only mode, an alteration can be checked for compatibility, with the
analysis algorithm returning an error indicator instead of permitting an invalid update. Alterna-
tively, lexical analysis can be allowed to proceed normally, followed by a post hoc check to determine
whether all transformations it induced were legal; if not, some or all of the transformations can be
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semantically) incorrect modifications; the lexer becomes involved because it is
the beginning of the analysis phase, and has the primary responsibility for the
initial incorporation of modifications into the analyzed program representation.

In a batch environment, a lexical description often includes a simple scheme
for handling characters that cannot be incorporated by other (‘normal’) pat-
terns. The rule accompanying this default pattern then emits an error mes-
sage. A similar solution can easily be provided in an interactive domain by
defining a distinguished token type to represent unmatched text. (Either the
pattern in the lexical description or the incremental run-time service should
ensure that contiguous unmatched characters are always combined into a sin-
gle ‘'unmatched text’ token.) The representation of unmatched tokens in the
parse tree can be handled similarly to those for explicit whitespace (the details
are beyond the scope of this presentation, but can be found in Wagner and Gra-
ham [1996¢]). In the lexical description for our running example (Figure 2),
the final pattern absorbs unmatched characters.

A similar approach can be taken to programmer-supplied error patterns,
which typically operate by recognizing a superset of the actual language and
then distinguishing correct lexical structures from ‘near misses’. A simple ex-
ample would be a language that limited the length of identifiers; the rule could
determine the number of characters in the pattern text and construct either
a normal or erroneous identifier depending on the result. Each error pattern
has a typed token to represent it, and thus communicates all the available
information to subsequent analysis tools. No special support is required for
detecting or handling errors in this fashion in the incremental lexer.

A more general approach to error recovery uses the interactive and history-
based nature of the ISDE to its full advantage. We observe that lexical and
grammatical errors are distinct from semantic inconsistencies (scoping pro-
grams, type violations) in that they typically make it impossible to incorporate
the latest modifications into the program representation in a way that results
in both valid tokens and valid tree structure.

The solution is to avoid incorporating invalid modifications. If the incre-
mental lexer or incremental parser do not recognize a valid (sub) string of the
language, the modifications that caused the problem are left unincorporated.
Erroroneous modifications can safely co-exist with legal modifications; the pres-
ence of an error does not prevent the incorporation of other, legal modifications
in different areas. (Naturally, several closely-spaced modifications may remain
unincorporated if any one of them is invalid.)

The lexer plays an important role in this approach, because it has the primary
task of locating modifications that affect the direct program representation.
Normally it does so by interrogating the history services to locate modifications
since the last-lexed version. When persistent errors are allowed, however, they
must be treated differently. A simple solution treats unincorporated changes
as modifications that are ‘re-applied’ immediately subsequent to the conclusion
of incremental lexing; this means that any erroneous modification will be re-
tried the next time incremental lexing is invoked. More efficient solutions use

efficiently discarded [Wagner and Graham 1995].
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historical information and incremental parsing theory to limit the potential
range of each error; the details of history-based syntactic error isolation appear
in Wagner and Graham [1996b].

8. CONCLUSION

The algorithm presented in this paper is the first published technique for
language-independent incremental lexical analysis that supports the full pat-
tern set of conventional batch generators and runs in optimal space and time.
It thus provides the maximum amount of expressiveness, enabling the lexical
characteristics of real programming languages to be described in a natural
manner without requiring either the language description writer or the lex-
ical generator to compute a limit on the length of inter-token dependencies.
Existing lexical analyzer generators can be used without modification. The
performance of our automatically-generated incremental lexers rivals hand-
written approaches and the generation process itself is fast enough to enable
rapid debugging and prototyping of new lexical descriptions.

In an interactive software development environment, our approach to in-
cremental lexing retains useful information and minimizes changes through
aggressive reuse computation, using both bottom-up and top-down approaches.
The incremental lexer is designed to operate as a subroutine of the incremental
parser to handle languages lacking the separate analysis property. Error re-
covery and the efficient reversibility of the lexing transformation are also sup-
ported.
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