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History-Sensitive Error Recovery
Tim A. Wagner, Susan L. Graham

Abstract— We present a novel approach to incremental re-
covery from lexical and syntactic errors in an interactive soft-
ware development environment. Unlike existing techniques,
we utilize the history of changes to the program to discover
the natural correlation between user modifications and er-
rors detected during incremental lexical and syntactic analy-
sis. Our technique is non-correcting—the analysis refuses to in-
corporate invalid modifications, while still permitting correct
changes to be applied. Errors are presented to the user simply
by highlighting the invalid changes.

The approach is automated—no user action is required to
detect or recover from errors. Multiple textual and structural
edits, arbitrary timing of incremental analysis, multiple er-
rors per analysis, and nested errors are supported. History-
based error recovery is language independent and is compat-
ible with the best known methods for incremental lexing and
parsing, adding neither time nor space overhead to those al-
gorithms. Effective integration with the environment’s his-
tory services ensures that other tools can efficiently discover
regions of the program (un)affected by errors, and that any
transformations of the program required to isolate or present
errors are themselves efficiently reversible operations.

Keywords— Error recovery, software development environ-
ments, incremental parsing, incremental lexing, development
log, program presentation

I. INTRODUCTION

S
YNTACTIC error recovery in batch systems is essen-
tially a solved problem, involving a heuristic com-

putation based on the configuration of the parser when
the error is detected [1]. The best methods known rely
on the ability to delay actions or reproduce part of the
parse on demand, so that a variety of repairs may be
tried at locations other than the detection point [2],
[3]. Since the recovery routine has no knowledge of the
user’s changes with respect to previous versions of the
prgoram, it attempts to correlate the problem with the
detection point by comparing the results of different re-
pairs. When the error is significantly complex or distant
from its detection point, a less informative ‘second stage’
recovery may be needed.

In an incremental, interactive software development
environment (ISDE), errors can arise as they do in batch
systems, since arbitrary modifications to the text and
structure of the program are permitted. Errors intro-
duced by changes will be discovered when the user next
requests incremental analysis. Many types of problems
can occur, including a variety of static semantic errors
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(type inconsistencies, missing definitions). However, er-
rors associated with the lexical and context-free syntax
play a special role in an ISDE: the structural represen-
tation is a core data structure, and language specifica-
tions typically do not prescribe the representation of er-
roneous programs.1 Thus the system is faced not only
with the task of effectively detecting and reporting any
errors, as in a batch compiler, but also with integrating
some representation of the problem into the persistent,
structural representation of the program. No satisfac-
tory approach to this problem has previously been avail-
able.

Several systems have tried to minimize or circumvent
the difficulty of error handing in an ISDE by limiting the
class of modifications available to the programmer [4];
in the extreme case, only structural operations that pre-
serve all correctness properties are permitted [5]. Our
approach is the other extreme: we place no restric-
tions on the editing model, allowing arbitrary textual
and structural modifications and arbitrary timing of the
analysis. Multiple errors, including nested errors, may
exist simultaneously and do not preclude the incorpora-
tion of other modifications. Errors may persist indefi-
nitely; the environment must tolerate the presence of
any invalid or inconsistent material and continue to pro-
vide as much functionality as possible [6]. The goal of
the environment is to isolate problematic regions, in-
form the user of their location, and provide assistance
by explaining the reason these modifications could not
be successfully adopted.

Our approach is fully automatic—no user interven-
tion is required to detect errors, and the user is free to
correct errors in any order, at any time. In contrast,
several researchers have addressed error recovery in an
ISDE by attempting to utilize the interactive nature of
the environment [7], [8], [9]. Unfortunately, these ap-
proaches all demand direct user intervention at each
error site and therefore impose an unnecessary serial-
ization on the analysis and the user’s actions. A few
research and commercial environments support unat-
tended incremental error recovery in the context of in-
cremental parsing [10], [11], [12] but there has been lit-
tle discussion or analysis of the technologies employed.
Moreover, no existing systems make use of the vast
amount of information available in the development log
being maintained by the environment.

The central idea in our approach is to recognize
that some user modifications introduce (locally) valid
changes while others do not: modifications success-

1Static semantic errors, on the other hand, can be represented
without leaving the framework of the attribute grammar or similar
formalism.
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fully incorporated into the structure and content of
the program representation are retained, while invalid
changes remain in their ‘unanalyzed’ form. This is a
non-correcting strategy: unlike most automated recov-
ery schemes, it does not attempt to guess the program-
mer’s intention. The well-known drawbacks of correct-
ing strategies are avoided: no conjectures are necessary,
spurious repairs never arise, and no heuristic ‘language
tuning’ is needed. The correctness of any repair we per-
form can be easily established, even in an incremental
setting.

Non-correcting approaches [13], [14], [15] have not
received much attention in batch compilers. Despite
the theoretical advantages described above, the practi-
cal limitations imposed by a batch setting cause even
the best of these approaches to be less useful than cor-
recting methods. The most critical problems involve er-
rors in bracketing syntax and the fact that the initial er-
ror typically obscures detection of subsequent problems,
since the following text is often a valid substring in some
sentence.2 Figure 1 illustrates these deficiences.

Our recovery scheme overcomes these deficiences by
using historical information [17]: the sequence by which
the programmer arrived at the current state affects the
treatment and reporting of errors. Changes recorded
in the development log permit comparisons between the
current and previous versions of the program, providing
a guide for determining the source of a given problem in
terms of the user’s own modifications. This approach can
discover the relationship between the point where an in-
correct change was applied and the point where the er-
ror was finally detected even when they are far apart or
separated by intervening errors.

Determining the relationship between changes to the
program and subsequent errors is a novel and powerful
tool for error handling. While the best known batch cor-
recting recoveries handle the example in Figure 1 better
than their non-correcting counterparts, they will typi-
cally fix the initial error by adding an extra closing brace
at the end of the program. Our approach instead ‘cor-
rects’ the problem by refusing to insert the extra open-
ing brace—a better and more comprehensible response
given the actual change made by the user.

The dependencies between program components in-
duced by lexical and syntactic analysis methods pro-
vide a natural way to discover and limit the scope of a
given error. This isolation process makes it possible to
treat unrelated errors independently and allows correct
modifications outside the isolated regions to be success-
fully incorporated. Isolation is computed incrementally,
by comparing the current (partial) structure of the pro-
gram to the previous structure stored in the develop-
ment log.

2Right-to-left substring parsing (interval analysis [13], [16]) has
been proposed to further constrain the location of detected errors, but
common mistakes can result in intervals so large that the user must
still locate the problem manually. Interval analysis does not address
the detection problems of batch non-correcting recoveries.

Initial (correct) program
int f () {
g(a + b);
if (c == 3) c = 4;
else c = 5;

}

Introducing three errors
int f () { f Inserted extra opening brace

g(a + b ); Deletion

if (c == 3) c = 4; Deletion

else c = 5;
}

Result: only one error is detected
int f () { {
g(a + b ERROR
else c = 5;

}

Fig. 1. An example where batch non-correcting techniques fail. The
first error (extra opening brace) is hidden by subsequent problems.
The second error, a deletion, is detected, but the non-correcting
nature of the recovery precludes discovery of the third error, since
what remains after the deletion is a valid substring. Our approach
discovers all three errors without attempting to correct the pro-
gram; the visual presentation would be similar to the second ver-
sion above with the explanatory text removed.

Not all of the modifications within an isolated region
are necessarily incorrect, and even a well-chosen isola-
tion region can be very large. Thus some mechanism
to detect legal modifications within an isolated region is
needed. Two techniques are used: retention of partially-
analyzed regions, which avoids discarding legal updates
prior to the detection point, and out-of-context analysis,
which applies incremental analysis techniques to modi-
fied subtrees within the isolated region. Together, these
techniques typically allow legal modifications to be in-
corporated, even in close proximity to one or more er-
rors.

This approach is language independent. The recov-
ery is guided by existing mechanisms for lexical and
syntactic analysis; the language designer is not re-
quired to provide additional specifications in order for
error recovery and reporting to function.3 The approach
is compatible with existing approaches to incremental
lexing [18], [19] and both deterministic [20] and non-
deterministic [21] parsing.

Errors are represented in a simple fashion: the in-
valid modifications are simply maintained as unincorpo-
rated edits. This suggests a presentation of errors that
is at once trivial and powerful: the unincorporated ed-
its are visually distinguished to indicate the recent user
changes responsible for the problem. The need to gen-
erate explanatory messages and associate them with lo-
cations in the program text is thus avoided. (For newly-
inserted material, error messages can be assigned in the
conventional manner). This representation also reuses
existed mechanisms: the presence of errors imposes no

3Large insertions of new text, which require batch analysis and for
which batch techniques are the only possible solution, may rely on
language-specific information to tailor their recovery. Section VII-F
discusses the application of batch approaches within a contiguous re-
gion of inserted text.
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Fig. 2. The recovery and presentation of a simple error. In V1, the
dashed lines indicate the path from the root to the site of the un-
incorporated modification. In V2, the isolated region is indicated
by light shading; the token shown in black has been marked to in-
dicate that it contains an invalid textual edit. The visual presen-
tation corresponding to each version is shown above the subtree.

additional requirements for persistent storage, change
reporting, re-analysis, or editing. Tools in the envi-
ronment can locate errors efficiently, and can restrict
their attention to the syntactically valid structure, since
unincorporated modifications and isolated subtrees are
clearly identified. Since both the representation and
presentation of errors are integrated with the structure
and content of the program, any transformations in-
duced by error recovery are completely reversible [22],
[23].

Figure 2 illustrates a simple example. In the initial
version (V0), the program is in a consistent state. The
user then modifies the program to create version V1.
At this point, the structure of the program is no longer
consistent with its textual content, due to the unincor-
porated deletion of the addition operator. In V2, the
user requests that consistency be restored; incremen-
tal analysis detects the error at this time. The expres-
sion enclosing the deletion is then isolated, and the to-
ken containing the deletion is flagged as possessing a
change that could not be successfully incorporated. The
error ‘message’ is simply the difference in the content of
the isolated region between V2 and V0 (shown as a box
around the deleted operator).

The rest of this paper is organized as follows. We be-
gin by discussing the program representation, history
log, and edit/change-reporting model in Section II. In
Section III we briefly review one method for incremen-
tal syntactic analysis, sentential-form parsing, to illus-
trate the relationship between the detection of an error
and the recovery routines. Section IV describes the ba-
sic framework for our approach, including the represen-
tation of errors and algorithms for isolating and record-
ing errors. In Section V we discuss techniques for incor-
porating additional (legal) modifications within an iso-
lated region by retaining partially-analyzed results and
by applying out-of-context analysis to modified, unana-
lyzed subtrees. Section VI considers a simple presenta-
tion scheme that combines analysis results, unincorpo-
rated material, and the contents of the distributed de-

velopment log to display errors in an informative man-
ner. Extensions to the basic framework are covered in
Section VII, and Section VIII concludes the paper.

II. EDITING MODEL AND CHANGE REPORTING

This section reviews our representation of structured
documents and a model for editing and transforming
them. The object-based versioning services described
here provide the incremental lexer and parser (and
other tools in the environment) with the means both
to locate and record modifications. The same interface
used to undo textual and structural edits can be used
to undo the effects of any transformation, including in-
cremental lexing, parsing, and error recovery. The rep-
resentation is based on self-versioning documents [23].

A. Representation

The algorithms described in this paper have been em-
bedded in a C++ implementation of the Ensemble system
developed at Berkeley. Ensemble is both a software de-
velopment environment and a structured document pro-
cessing system [24], [25]. Its role as a structured doc-
ument system requires support for dynamic presenta-
tions, multimedia components in documents, and high-
quality rendering. The need to support software ne-
cessitates a sophisticated treatment of structure: fast
traversal methods, automated generation mixed with
explicit (direct) editing of both structure and text, and
support for complex incremental transformations [26].

Although the Ensemble document model supports at-
tributed graphs, in this discussion we will restrict our
attention to tree-structured documents, focusing pri-
marily on the text and structure associated with pro-
grams. Each tree is associated with a language; in the
case of programs, this is a run-time representation of
the programming language, containing the grammar
and an appropriate specialization of the associated anal-
ysis/transformation tools. The tree’s structure corre-
sponds to the concrete or abstract syntax of the pro-
gramming language; the leaves represent tokens. (Any
explicit whitespace tokens are integrated with the nor-
mal structure.) Tree nodes are instances of strongly-
typed classes representing productions in the grammar.
These classes are automatically generated when the
language description (including the grammar) is pro-
cessed off-line. Semantic analysis and other tools ex-
tend the base class for each production to add their own
attributes as slots [27]. Information can also be associ-
ated with nodes via annotations or as references from a
program database.

B. Editing Model

We permit an unrestricted editing model: the user
can edit any component, in any presentation, at any
time. These changes may introduce temporary inconsis-
tency in the program representation. The frequency and
timing of consistency restoration is a policy decision:
in our current prototype, incremental lexing, parsing,
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and semantic analysis are performed when requested by
the user, which is usually quite frequently but not af-
ter every keystroke. Between incremental analyses, the
user can perform an unlimited number of mixed textual
and structural4 edits, in any order, at any point in the
program. Incremental performance is not adversely af-
fected by the location of the edit site(s)—changes to the
beginning, middle, or end of the program are integrated
equally quickly.

Our approach handles all transformations, both user
changes and those applied by tools such as incremen-
tal parsing, in a uniform fashion. Among other bene-
fits, this allows the user to use existing undo/redo com-
mands to return to any state of the program. This uni-
form treatment is critical to providing a rational user
interface, and requires no additional effort in the im-
plementation of the incremental tools—their effects are
captured in the same development history that records
all program modifications.

C. Program Versions and Change Reporting

An ISDE includes a variety of tools for analyzing and
transforming programs. Some tools must be applied in
a strict order—for example, semantic analysis cannot
be applied until incremental lexing and parsing have
restored consistency between the text and structure of
a program component. Simple editing operations can
also be viewed as transformations, a perspective that
is particularly useful when discussing change reporting,
the means by which tools convey to each other, via the
history services, which portion of a program has been
changed.

Modifications to the program are initially applied by
the user, either directly or through the actions of one or
more tools. The completion of a logical sequence of ac-
tions is indicated by a commit step; once committed, the
contents of a version are read-only and are treated as a
single, atomic action when changing versions. All ver-
sions are named, allowing tools to readily identify any
accessible state of the program.

History (versioning) services provide the correspon-
dence between names of versions and values. Their pri-
mary responsibility is to maintain the development log,
retaining access to ‘old’ information. Updates to persis-
tent information are routed through the history service,
with the current value of versioned data always cached
for optimum performance.

The history services also provide a uniform way for
tools to locate modifications efficiently. This service is
fully general, in that any tool can examine the regions
altered between any two versions. Changes can be ex-
amined not just at the level of the entire program, but
also in a distributed fashion for every node and subtree.

4There are no restrictions on structural updates save that a node’s
type remain fixed and that the resulting structure remain a tree.
Structural changes not compatible with the grammar are permitted;
special error nodes are introduced as necessary to accommodate such
changes. (See Section VII-A.) Textual modifications are represented
as local changes to the terminal symbol containing the edit point.

bool has_changes([local|nested])
bool has_changes(version_id, [local|nested])

These routines permit clients to discover changes to a single node or to
traverse an entire (sub)tree, visiting only the changed areas. When no
version is named, the query refers to the current version. The optional
argument restricts the query to local or nested changes only.

node child(i)
node child(i, version_id)

These methods return the ith child. With a single argument, the current
(cached) version is used. Similar pairs of methods exist for each versioned
attribute of the node: parent link, versioned semantic data, etc.

void set_child(node, i)
Sets the ith child to node. Because the children are versioned, this
method automatically records the change with the history log. Similar
methods exist to update each versioned slot.

void discard(and_nested?)
Discards any uncommitted modifications to either this node alone or in
the entire subtree rooted by it when and_nested? is true.

Fig. 3. Summary of node-level interface used by incremental anal-
yses. Each node maintains its own version history, and is capa-
ble of reporting on both local changes and ‘nested’ changes—mod-
ifications within the subtree rooted at the node. The version_id
arguments refer to the document as a whole; they are efficiently
translated into names for values in the local history of each ver-
sioned object [23].

This generality is achieved by having each node main-
tain its own edit history [22], [23].

Change reporting is the protocol by which tools dis-
cover the modifications of interest to them. Change re-
porting is mediated by the history service; tools record
changes as a side effect of transforming the program and
discover changes when they perform an analysis. The
history service provides two boolean attributes for each
node to distinguish between local and nested changes.
Local changes are modifications that have been applied
directly to a node. For terminal symbols, a local change
is usually caused by an operation on the external rep-
resentation of the symbol. (In the case of programs,
local changes usually indicate a textual edit.) Struc-
tural editing normally causes local changes to internal
nodes. Nested changes indicate paths to altered regions
of the tree. A node possesses this attribute if and only
if it lies on the path between the root and at least one
locally-modified node other than itself. Local changes
are simply a derived view on the local history log, but
nested change attributes must be incrementally com-
puted as synthesized attributes (and must themselves
be versioned). Figure 3 summarizes the node-level his-
tory interface needed by incremental analysis and error
recovery.

Incremental analysis involves three distinct versions
of the program:

Reference: A version of the program that represents a
consistent state. Any version that concluded with
an analysis operation may be used; our prototype
selects the most recent consistent version as the ref-
erence for the subsequent analysis. Exception: an
initial analysis of a newly-entered program has no
reference version, since it represents a batch sce-
nario.

Previous: The state of the program immediately prior
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Fig. 4. The relationship between the three permanent ‘sentinel’ nodes
and the parse tree structure. Two permanent tokens bracket the
terminal yield of the parse tree, while a third sentinel points to
both of these tokens as well as the (current) root of the parse tree.
The sentinel nodes do not change from one version to the next.

to the start of re-analysis. This is the version read
by the lexer and parser to generate their input.
(The modifications accrued between the reference
and previous versions determine the tokens and
subtrees available for potential reuse.)

Current: The version being written (constructed) by
the lexer/parser.

Tools in the ISDE use permanent sentinel nodes to
locate starting points in the mutable tree structure.
Three sentinel nodes, shown in Figure 4 are used to
mark the beginning and end of the token stream and the
root of the tree.

To create a new program, a null tree corresponding to
only the sentinels in Figure 4 and an empty (‘complet-
ing’) production for the start symbol of the grammar is
constructed. The initial program text is assigned tem-
porarily as the lexeme of bos. Then a (batch) analysis
is performed, which constructs the initial version of the
persistent program structure; all subsequent structure
is derived solely through the incorporation of valid mod-
ifications.

III. INCREMENTAL PARSING

Incremental parsing utilizes a persistent parse tree
and detailed change information to restrict both the
time required to re-parse and the regions of the tree that
are affected. The input to the parser consists of both ter-
minal and nonterminal symbols; the latter are a natu-
ral representation of the unmodified subtrees from the
reference version of the parse tree. In this section we
provide a brief overview of incremental sentential-form
parsing; the details may be found in [20].5

To restore structural consistency, the tree is conceptu-
ally ‘split’ in a series of locations determined by the mod-
ifications since the previous parse. Modification sites
can be either interior nodes with structural changes
or terminal nodes with textual changes, and the split
points are based on the dependencies determined by the
read-ahead of the lexer and the (fixed) number of look-
ahead items used in constructing the parse table. The
input stream to the parser will consist of both new ma-

5Our error recovery algorithm can also be used in conjunction with
state-matching algorithms [7], [28] as well as non-deterministic pars-
ing [21] (see Section VII-D).

TOS

LA

Left (parse)

Input Stream

Stack

(subtree reuse stack)

Fig. 5. Incremental parsing example. This figure illustrates a com-
mon case: a change in the spelling of an identifier results in a
‘split’ of the tree from the root to the token containing the mod-
ified text. The shaded region to the left becomes the initial con-
tents of the parse stack, which is instantiated as a separate data
structure since it may contain a mixture of old and new subtrees.
The shaded region to the right provides the input stream for both
the lexer and the parser. This stream (sometimes treated as a
stack by the parser) is not explicitly materialized—its contents are
derived by traversing the previous tree. Except when a new to-
ken has been created, the top element of the right stack serves as
the parser’s lookahead symbol. The subtrees in the input stream
unchanged since the reference version constitute the potentially-
reusable portion of the previous analysis.

terial (in the form of tokens provided by the incremen-
tal lexer) and reused subtrees; the latter are concep-
tually on a stack, but are actually produced by a di-
rected traversal over the previous version of the tree.
An explicit stack is used to maintain the new version
of the tree while it is being built. This stack holds both
symbols (nodes) and states (since they are not recorded
within the nodes). Figure 5 illustrates a common case,
where a change in identifier spelling has resulted in
a split to the terminal symbol containing the modified
text.

A sentential-form incremental parser works by pars-
ing nonterminal symbols in addition to terminal sym-
bols. For LR(0) parsers, the mere fact that the gram-
mar symbol associated with a subtree’s root node can
be shifted in the current parse state indicates that the
entire subtree can be consumed by the parser without
further analysis. The situation is similar, though more
complex, for the LR(1) case: the fact that a subtree
with non-empty yield can be shifted indicates that all
but the final sequence of reductions—those along the
right-hand edge of the subtree—are known to be valid
(and hence reusable without further investigation). A
sentential-form parser can operate optimistically, shift-
ing entire subtrees (including those with empty yield)
even though this may occasionally permit invalid tran-
sitions. Any mistakes are discovered before additional
material is shifted, and induce a limited form of back-
tracking.

When a non-trivial subtree occurring in the input
stream cannot be shifted, it is removed and replaced by
its constituents. If parsing cannot continue with a ter-
minal symbol as lookahead and the material on top of
the parse stack was optimistically shifted, then it is sim-
ilarly broken down so that the top-of-stack symbol is a
terminal. (Any reductions are undone to roll-back to the
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state immediately following the shift of the rightmost
terminal symbol to the left of the lookahead.) If a parse
error is detected before further a shift occurs, the input
is known to be invalid.

The incremental parser of [19] invokes error recovery
in the same configuration (stack contents, parse state,
and lookahead symbol) as a batch parser. For a com-
plete LR(k) parse table, the symbol on top of the parse
stack will be a terminal. When the parse table is SLR
or LALR or contains default terminal reductions, the
topmost stack symbol may be a nonterminal. At this
point the parser will invoke the recovery routine. (Other
than detecting the error at the appropriate location with
respect to the input stream, no special requirement is
placed on the incremental parsing algorithm.) As part of
its processing, the error recovery routine will reset the
configuration so that parsing can resume; note that the
recovery may consume additional material from the in-
put stack before it returns control to the normal parsing
algorithm.

IV. MODELING ERRORS

Section II introduced a basic program representation
and a model for the editing and transformation of pro-
grams through language-specialized analysis. Here we
extend that representation to include errors, in the form
of persistent, unincorporated modifications.

A. Maintaining Unincorporated Modifications

In a program without errors, the correctness proper-
ties of the incremental lexical and syntactic analyses
guarantee that the text, tokens, and structure of the
program are all consistent with one another and are
valid with respect to the language definition. Any modi-
fications performed by the user introduce temporary in-
consistencies among (and possibly within) these differ-
ent representations. When such modifications lead to
another correct program state, the next invocation of in-
cremental analysis will transform the program repre-
sentation to the new state.

When one or more modifications introduced by the
user do not result in a syntactically correct program
state, the result of incremental lexing and parsing is
unspecified: the language definition and the correct-
ness proofs of these transformations do not address the
construction of a persistent representation involving er-
rors, despite its overarching practical importance in an
incremental environment. Our solution is based on an
observation that is simultaneously simple and powerful:
not all modifications need to be incorporated. We per-
mit the inconsistency induced by one or more user mod-
ifications to persist indefinitely; the goal will be to in-
corporate as many valid edits as possible while leaving
all the invalid edits unincorporated. Clearly this cannot
violate the correctness properties of incremental lexing
or parsing as long as we consider all the unincorporated
edits as pending modifications when incremental anal-
ysis is next invoked.

When only textual modifications and legal structural
edits are permitted, the structure of the program rep-
resentation remains correct (with respect to the gram-
mar) at all times, although the lexeme,token mapping
may be inconsistent until outstanding user modifiica-
tions have been incorporated through analysis. (Sec-
tion VII discusses support for structural edits that in-
troduce non-grammatical tree structure.) The correct-
ness of the program structure with respect to the gram-
mar can then be established by simple induction. There
is a simple relationship between the presence of errors
and consistency properties: the program text as defined
by the left-to-right concatenation of the lexemes consti-
tutes a correct program if and only if the representa-
tion is free of unincorporated modifications following the
analysis.

During re-analysis of a program containing errors,
the incremental lexer and parser must investigate the
site of each unincorporated change, since additional
modifications may have changed the surrounding con-
text in such a way that the former error is now valid.
(In the next section we describe mechanisms to limit
the scope of an error.) For these and other tools in the
ISDE to locate errors efficiently, each node containing
an error must be distinguished and the path between
the root of the tree and each error-containing node must
be marked. This is accomplished with a pair of boolean
attributes similar to the local and nested attributes
provided by the history services for change reporting.6

The incremental lexing and parsing algorithms treat er-
rors and error paths in the same fashion as local and
nested change attributes in determining which regions
of the program structure require re-analysis.

B. Isolating Errors

The drawback to the model described above is that
it applies globally: every error site must be treated as
a pending modification when re-analysis is requested,
and no legal modifications can be incorporated until all
the errors have been corrected. However, it is not nec-
essary to treat the entire program as a unit; in this sec-
tion we use incremental analysis and the relationship
between the current analysis and the previous structure
of the tree to isolate errors from one another.

Isolation makes our model of error recovery as unin-
corporated changes meaningful, by allowing legal mod-
ifications outside the isolated regions to be successfully
integrated by the incremental lexer and parser. By sep-
arating the errors, isolation also improves the perfor-
mance of subsequent analyses: it is not necessary to re-
inspect the errors in an isolated region unless that re-
gion contains new user modifications or is affected by
changes to the surrounding context. The independence
of isolated structure is also useful within the region,

6Changes to the local_error and nested_error attributes must
themselves be captured in the history log—this allows the transforma-
tion induced by incremental analysis to be fully reversible, even when
it involves error recovery.
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Fig. 7. Isolation in a ‘stack recovery’ situation.

since its recovery can be computed separately from the
analysis of surrounding structure or other erroneous re-
gions of the program by construction.

Isolation is defined by the analysis techniques: the
dependencies between program components induced by
lexical and syntactic analysis determine the size of an
isolated region. However, computing an isolation re-
gion solely through the analysis of the current program
state is problematic: this essentially implements a con-
ventional (batch) non-correcting recovery, subject to the
shortcomings described in Section I. Fortunately there
is an additional source of information in an ISDE: the
previous structure of the program is accessible, and can
be used along with the dependency information to sep-
arate and contain errors.

Once an error has been detected by the lexer or parser,
the previous structure provides a useful guide for con-
straining its effect. The isolation algorithm locates a
well-formed subtree that existed in the previous version
which can be retained in the current version of the pro-
gram structure to contain the site of the error. (The

‘matching condition’ used by some state-matching in-
cremental parsers computes a similar relationship be-
tween the old and new trees [28], [29].) When isolated
regions are small, each is likely to contain only a single
error (thus preventing the recovery of one problem from
contaminating another) and most correct modifications
will lie outside all isolated regions (allowing them to be
successfully incorporated).

Figure 6 contains a simple isolation example. Here
the user has mistakenly inserted an additional right
parenthesis following the test expression in a condi-
tion. (The syntax of C is used in this and other ex-
amples.) The problem is conceptually contained within
the if_stmt from the previous version of the program
structure. The isolation algorithm discovers this fact
and ‘reverts’ this statement to its previous form. The
erroneous insertion is left as an unincorporated textual
modification, and presented to the user as an error.

Isolation is not limited to purely ‘local’ problems; Fig-
ure 7 contains an example that would result in an ex-
tensive secondary repair in conventional batch recovery.
In our approach, the accidental deletion that merges
the two function definitions is recovered by the isola-
tion process. The use of the previous structure allows
the right side of the first definition’s structure and the
left side of the second definition’s subtree to be restored.
(The actual node chosen for isolation in this case will
be the lowest common ancestor in the sequence contain-
ing these function definitions; sequence representation
is discussed in Section V-D.)

The paths to unincorporated modifications defined by
nested_error attributes are terminated immediately
below the root of the isolated subtree. This allows subse-
quent analyses to avoid re-inspecting the isolated errors
unnecessarily.

C. Computing Isolation Regions

Figure 8 contains the routines to locate and apply iso-
lation. Isolation begins by removing any default reduc-
tions from the parse stack using right_breakdown;
the associated nodes are ignored in the subsequent
search for an isolation node. The search for an isolation
candidate then proceeds by comparing the current and
previous versions of the program’s structure in the re-
gion of the error. (Note that, it is always possible to iso-
late some subtree, since the ultra root persists across all
versions of the tree.) Having found a suitable candidate,
we can cut back the parse stack to the beginning of the
isolated subtree, shift the isolated subtree’s root node,
advance the lookahead pointer to the following subtree
in the previous version, and re-start the analysis in the
resulting configuration.

The search for an isolation candidate proceeds in two
dimensions: each entry on the (current) parse stack
that is not a new node is considered, and for each of
these nodes its set of ancestors in the previous ver-
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SetOfBool paths_to_ignore;

Find a node that exists in the previous version of the parse tree that
covers the damaged region.
recover () {

SetOfBool paths_to_ignore = ;;
right_breakdown();
int sp = 0;
for (NODE *n = stack.node(); !n!is_bos; {
sp++;
if (n!created_in(gvid())) continue;
int offset = stack.offset(stack.length - 1);
if (valid_iso_subtree(n, offset, stack.state()))
return isolate((NODE*)n, sp, 1);

If the root of this subtree is new, keep looking down the parse stack.
Otherwise, try searching his ancestors.
int cut_point;
for (NODE *ancestor = last_edited!parent(n);

ancestor != ultra_root &&
stack.get_cut(ancestor, cut_point);
ancestor = last_edited!parent(ancestor))

if (ancestor 62 paths_to_ignore &&
valid_iso_subtree(
ancestor, stack.offset(cut_point),
stack.state(cut_point), cut_point))

return refine(ancestor, sp, cut_point);
else {add ancestor to paths_to_ignore; n = ancestor;}

state = stack.state(); stack.pop(); n = stack.node();
}
return ultra_root; Isolate the entire tree.

}

Remove any subtrees on top of parse stack with null yield, then
break down right edge of topmost subtree.
right_breakdown () {

NODE *node;
do { Replace node with its children.
node = parse_stack!pop();
add node to paths_to_ignore;
Does nothing when child is a terminal symbol.
foreach child of node do shift(child);

} while (is_nonterminal(node));
shift(node); Leave final terminal symbol on top of stack.

}

Shift a node onto the parse stack and update the current parse state.
void shift (NODE *node) {

parse_stack!push(parse_state, node);
parse_state =
parse_table!GOTO(parse_state, node!symbol);

}

Get offset of first character not before yield of index th entry.
int Stack::offset (int index) {

for (int i = 0, offset = 0; i < index; i++)
if (i == index) return offset;
else offset = offset + entry[i].node!text_length;

}

Compute stack entry corresponding to leading edge of node’s subtree in
the previous version. Returns false if no entry is so aligned.
bool Stack::get_cut (NODE *node, int &cut_point) {

int old_offset = last_edited!offset(node);
for (int cut_point = 0, offset = 0;

cut_point < length; cut_point++)
if (offset > old_offset) return false;
else if (current_offset == old_offset) return true;
else

offset = offset + entry[cut_point].node!text_length;
return false;

}

Isolate: : :finish!
isolate (NODE *node, int sp, int cut_point) {

stack.unpop(sp - 1);
refine(node);
parse_state = stack.state(sp - 1 + cut_point);
stack.pop(sp - 1 + cut_point);
shift(node);

}

Fig. 8. Isolating syntax errors. The valid_iso_subtree test is
shown in Figure 9. The operation of the refine routine is pre-
sented in Figure 13, after the refinement techniques have been
presented.

bool valid_iso_subtree (NODE *node, int left_offset,
int state, int cut_point) {

if (node 2 isolation_rejects) return false;
add node to isolation_rejects;
The starting offset of the subtree must be the same in both the
previous and current versions.
The ending offset must meet or exceed the detection point.
int left_offset = new_offset;
if (left_offset != last_edited!offset(node))
return false;

if (left_offset > detection_offset) return false;
if (left_offset + node!text_extent(last_edited!gvid()) <

detection_offset)
return false;

Lexical tests —see Section VII-C
Now see if the parser is willing to accept this isolation, as
determined by the shiftability of its root symbol in the current
stack configuration.
stack.pop(cut_point);
action = next_action(node, state);
stack.unpop(cut_point);
return action == SHIFT;

}

Fig. 9. Procedure to test whether a given subtree is a valid isolation
candidate. The tests include textual alignment with respect to the
previous version of the subtree, lexical consistency checks, and an
LR(0) (shift) test for the symbol labeling the root node of the sub-
tree.

sion is considered.7 Each candidate is tested with
valid_iso_subtree, to determine whether an isola-
tion rooted there would cover the damaged area and be
acceptable to both the lexer and parser.

The choice of an isolation region must simultaneously
maintain all analysis invariants. The primary lexical
restriction is that the isolated region contains the same
text (range of offsets) in both the previous and current
versions—otherwise characters could be lost or appear
multiple times. Additional lexical invariants may need
to be imposed depending on the expressive power of the
lexical description language. (Section VII-C describes
the impact of several lexical description features on the
isolation conditions.)

The syntactic condition for a successful isolation re-
quires that the subtree from the previous version of the
program ‘align’ with the current parse stack—the left
edge of the isolated subtree must correspond to the left
edge of some subtree on the parse stack. This allows
the isolated subtree to replace partial analysis results
by popping one or more entries off the stack and push-
ing the root node from the isolated subtree. Such a push
must make sense with respect to the parse table: shift-
ing the symbol (left-hand side) of the production label-
ing the root node of the isolated subtree must be a legal
move in that configuration.

Passing the alignment and shift tests does not guar-
antee that the parser will be able to continue parsing
successfully when the recovery is complete; the right-
context of the isolated subtree may not be legal. Al-
though it would be possible to check this as part of the
isolation conditions, a simpler technique is to allow the
parser to detect the problem and re-invoke recovery: a

7Different search strategies could be employed; for instance, nodes
deeper in the stack may sometimes be preferable to ancestors high in
the previous tree.
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Discard changes and record errors in the subtree rooted at node;
discard_changes_and_mark_errors (NODE *node) {
node!discard_changes();
if (node!has_changes(reference_version, local)

if (!node!local_errors) {
node!local_errors = true;
node!compute_presentation(reference_version);

}
if (9 child of node s.t.

(child!local_errors || child!nested_errors)))
node!nested_errors = true;

else node!nested_errors = false;
}

Fig. 10. Dicarding partial analysis results and marking unincorpo-
rated modifications (‘error’) local to a single node. The structure
and content of the subtree rooted at node are reverted to their
state in the previous version of the program. Any user modifica-
tions (textual or structural) within this subtree are marked as un-
incoporated errors, and nested error attributes are set to record
the path between node and the location of each such error. The
presentation of errors is discussed in Section VI.

larger isolation region will then be selected, since all
previously isolated nodes are rejected as candidates.

Once chosen, any partial analysis results applied an
isolation region can be removed by a recursive appli-
cation of the algorithm in Figure 10; this will revert
each modified subtree to its state in the previous ver-
sion of the program (where the structure is known to be
correct). Any user changes since the reference version
are marked as unincorporated errors. By construction,
modifications (valid or invalid) outside the isolated re-
gion are unaffected. (In Section V we develop methods
to incorporate legal modifications within the isolated re-
gion.)

The general search for an isolation subtree considers
only interior nodes. Since errors are sometimes con-
tained within the textual modification(s) applied to a
single token, the recovery can also consider token-level
isolation prior to the algorithm described above. Rea-
sonable choices of tokens to examine include the top-of-
stack and lookahead symbols, as well as tokens close to
them in the previous version. If a token-level isolation
succeeds, the algorithm in Figure 10 is applied to it, the
configuration is reset based on the location of the token
relative to the error, and analysis is re-started.

D. Handling Lexical Errors

Although the previous sections have focused on recov-
ery from syntactic errors, the mechanisms are also ap-
plicable to lexical problems. Errors at the lexical level
can be discovered by including explicit rules in the lex-
ical description to match invalid sequences; when one
of these patterns is recognized, it creates a special er-
ror token. A simpler mechanism, which can be used
either alone or in concert with explicit error patterns,
is implicit detection: Instead of modifying the descrip-
tion, problems are discovered when characters cannot
be legally recognized as belonging to any pattern; each
contiguous sequence of unmatched characters produces
an instance of a special unmatched token class. The
parser will be unable to shift an unmatched-text token,
since it is neither a legal whitespace token nor does it

represent a terminal symbol in the grammar. This will
result in the detection of a parse error; the subsequent
recovery will then treat the erroneous textual changes
using the mechanisms already discussed.

Explicit error tokens can either induce this same be-
havior or persist as whitespace tokens—the latter be-
havior is occasionally useful when the error is so com-
mon or idiosyncratic that recognizing a superset of the
actual language is preferable to a normal error presen-
tation. Regardless of the policy chosen, no special effort
is required to recognize, recover from, or present lexi-
cal problems. (However, recovery must respect lexical
invariants as well as syntactic restrictions; Section VII-
C describes the impact of various features of the lexical
description language on the recovery process.)

V. INCORPORATING MODIFICATIONS WITHIN
ISOLATED REGIONS

If every isolated region contained only errors and no
legal modifications, then the algorithm in Figure 10
would constitute a sufficient recovery. However, an iso-
lated subtree will in general contain several legal mod-
ifications, especially when the isolated subtree is large
(as can happen with errors in bracketing constructs or
lengthy sequences). In this section we consider refine-
ment techniques that can integrate some, and in many
cases all, of the correct modifications within an isolated
subtree.

A. Retaining Partial Analysis Results

Refinement employs two different techniques, de-
pending on the location of the modifications relative to
the detection point that triggered the recovery. The
first technique attempts to retain modified subtrees that
have already been analyzed. When the recovery rou-
tine is invoked, the incremental lexer and parser have
already seen any material to the left of the detection
point. In general, several legal modifications will al-
ready have been incorporated into this material (repre-
sented by new or modified subtrees on the parse stack).
Subject to certain restrictions, these subtrees can be re-
tained instead of discarded. This will allow nested isola-
tion regions to persist in those subtrees, and avoids the
redundant work of re-marking errors within them. Fig-
ure 11 illustrates a simple example.

The two-pass retention algorithm is shown in Fig-
ure 12. In the first pass, the previous structure of the
portion of the isolated region to the left of the detection
point is examined; any subtrees reconstructed in their
entirety and that meet alignment8 and lexical invari-
ant restrictions can be retained in their new form in-
stead of being discarded. The second pass is used to
actually carry out this transformation, discarding re-

8Note that permitting the incorporation of valid modifications with-
in the isolated region implies that the mapping between lexemes and
characters may change, even though the character yield of the iso-
lated region as a whole is unchanged from the previous to the current
version.
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Fig. 11. Retaining partial analysis results. The mistaken change of the keyword if to the identifier i causes the beginning of the statement
to be re-interpreted as a function call. When the return keyword is reached, the parser detects the problem. The test expression (shaded)
represents a subtree shared by both versions: no inspection of this subtree is required if it contains no edits. More interestingly, if it is
changed to any other legal expression, the recovery can retain the analyzed result—the keyword error does not preclude the incorporation
of correct changes to the test expression.

sults that cannot be retained and marking the unincor-
porated modifications using the algorithm of Figure 10.
In general this creates a ‘canopy’ of structure from the
previous version with aribitrarily large subtrees from
the current analysis embedded within it. A two-pass al-
gorithm is necessarily to avoid corrupting the new ver-
sion until all the decisions about retaining portions of it
have been made. Unmodified subtrees from the previ-
ous version that occur in the new structure are not in-
spected further by either pass.

B. Out-of-Context Analysis

Retaining pre-parsed subtrees permits the incorpora-
tion of legal modifications within an isolated region to
the left of the detection point. Modifications may also
exist to the right of the detection point, in which case
the lexer and parser have not processed the affected sub-
trees. In Figure 11, suppose that, in addition to the
error in the keyword if, the user replaces the return
statement with a different statement. Without the tech-
niques described below, such a modification would go
unincorporated.

Even though no analysis has been performed on mod-
ified subtrees to the right of the detection point, it is not
correct to simply restart analysis within the isolated re-
gion. (Error recovery guarantees that a legal analysis
configuration has been restored only at its conclusion.)
Instead, we perform an out-of-context analysis, which
attempts to analyze each (maximal) subtree containing
user modifications independent of its surrounding con-
text.

As with partial analysis retention, we place sufficient
conditions on out-of-context analysis to ensure that any

Given the root of a subtree from the previous version of the tree,
itemize the retainable subtrees within it.
find_retainable_subtrees (NODE *node) {
if (exists_in_new_tree(node) &&

(!node!changes(reference_version, nested) ||
same_text_pos(node))) {

add node to retainable;
return;

}
foreach child of node in the previous version do
find_retainable_subtrees(node);

}

Retain retainable subtrees and discard remaining structure
rooted at the argument node.
retain_or_discard_subtrees (NODE *node, NODE *parent) {
if (node2retainable) {

node!set_parent(parent);
remove node from retainable;
return;

}
discard_changes_and_mark_errors(node);
foreach child of node do keep_or_discard_subtrees(node);

}

Fig. 12. Computing partial analysis retention. The top function is
the first pass, which computes the set of retainable subtrees. The
bottom function is the second pass, which retains the legal sub-
trees and discards any partial results for the remaining nodes.
same_text_pos determines whether a subtree’s yield occupies
the same character offset range as in the previous version of the
program.

incorporated changes do not interfere with the isolation
itself or with the handling of adjacent subtrees. Un-
like retention, however, the sufficiency tests for out-of-
context analysis are distributed: Prior to analysis we
verify that the target subtree contains at least one mod-
ification, has a non-null yield, and is not followed by a
terminal requiring analysis. During the subtree’s anal-
ysis we check whether the lexer was able to synchronize
with the previous contents before hitting the rightmost
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edge—otherwise the lexical analysis would ‘bleed’ into
the next subtree to the right. Finally, at the conclusion
of the subtree’s analysis we must ensure that the sym-
bol of the production labeling its (possibly changed) root
is the same as in the previous version of the program.9

When all of these conditions are met, the out-of-context
analysis succeeds, and the analyzed results are inte-
grated into the current version of the program.

The algorithms for incremental lexing and parsing
during out-of-context analysis are the same as for nor-
mal analysis. To simplify the handling of out-of-context
analysis, we can build a temporary set of sentinel node
that allow the subtree to appear as the entire program.
Out-of-context parsing requires augmenting the parse
table to allow any symbol to serve as the start sym-
bol [31]. This requires a distinguished terminal for each
symbol to avoid conflicts; the temporary bos token can
be used to represent this ‘starting terminal’ in order to
place the parser in the correct state to process the sub-
tree in an out-of-context manner.

The error recovery routines themselves are avail-
able during an out-of-context analysis: errors detected
while the subtree is being analyzed are processed by re-
entering the recovery routine. This permits nested iso-
lation and refinement to occur in modified subtrees to
the right of the (outer) detection point just as they can
exist in retained analysis results to the left. The fail-
ure of any sufficiency checks applied during or immedi-
ately after the out-of-context analysis of a subtree result
in a nested recovery that isolates the subtree being pro-
cessed. (In general, partial analysis results will be valid
and will be retained within the subtree, even though the
out-of-context analysis as a whole did not succeed.)

C. Refinement Algorithm

Figure 13 contains the top-level routine to initiate a
refinement of the recovery within an isolated region.
This routine divides the isolated structure into three
groups: subtrees to the left of the detection point, sub-
trees to the right of it, and subtrees that span the detec-
tion point. The latter are treated in the same fashion as
unsuccessful candidates for retained or out-of-context
analysis: any pending local changes are discarded, local
changes by the user become errors, and the node’s (pre-
vious) children are recursively investigated if the node
indicated nested changes.

The correctness of these refinement techniques can
be easily established as a left-to-right inductive proof
on the subtrees within the isolation region; unmodi-
fied subtrees remain unchanged, discarded changes re-
vert to previously correct structure, and any subtrees
chosen for analysis retention or out-of-context analysis
possess (by construction) sufficient conditions to ensure
that their handling is independent of the surrounding
material.
9Unlike Degano [30], we apply this restriction only as a mechanism

for improving error recovery; this restriction does not apply to the
user’s editing model.

Isolate the argument and recursively recover the subtree
that it roots.
refine (NODE *node) {
int offset = last_edited!offset(node);
pass1(node, offset);
node!discard();
node!local_errors = node!nested_errors = false;
pass2(node, offset);

}

pass1 (NODE *node, int offset) const {
foreach child of node in the previous version do {
if (offset + child!text_extent() <= detection_offset)
find_retainable_subtrees(child);

else pass1(child, offset);
offset += child!text_extent();

}
}

pass2 (NODE *node, int offset) {
foreach child of node in the current version do {
if (offset > detection_offset)
attempt_out_of_context_analysis(child);

else if (offset + child!text_extent()
<= detection_offset)

retain_or_discard_subtrees(child, node);
else {
discard_changes_and_mark_errors(node);
pass2(node, offset);

}
offset += child!text_extent();

}
}

Fig. 13. Refining an isolated region. The refine routine performs
two passes over the isolated subtree. The first pass is read-only
and computes the set of retainable subtrees. The second pass re-
verts any unretainable material to the left of the detection point,
invokes out-of-context analysis on any candidate subtrees to the
right of the detection point, and discards changes on material that
spans the detection point.

There are several implicit trade-offs in the compu-
tation of candidate nodes for isolation, retention, and
out-of-context analysis. For isolation, increased time
spent searching for a tighter isolation region may pro-
vide little practical benefit even if it succeeds, especially
since the refinement techniques are so powerful. For
the refinement tests, the independence constraints we
impose can result in the failure to incorporate some le-
gal changes. These restrictions could be relaxed—for in-
stance, allowing several subtrees to be jointly retained
or analyzed out of context, where considered singly they
would fail. However, in addition to a more complicated
correctness proof, looser constraints imply the need for
more complex verification checks, limited backtracking,
or both; any potential benefits must thus be weighed
against the increased computation required and the fact
that refinement as presented is already extremely effec-
tive.

D. Running Time

Optimal methods for incremental lexing and sententi-
al-form parsing require time O(t+ s lgN), for t new ter-
minal symbols and s modification sites in a tree with
N nodes. This result assumes that lengthy sequences
are identified in the grammar and represented as bal-
anced trees in the resulting program structure; see [20]
for a discussion of the issues. The presence of history-
sensitive error recovery does not affect the running time
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of either algorithm, since no additional work is required
until a recovery is actually invoked.

Under the same assumptions regarding the represen-
tation of lengthy sequences, the error recovery routines
presented here require a worst case running time of
O(t + s(lgN)2). The additional lgN factor is inherent
in the approach: intuitively, it represents the need to
compare the current and previous structure of the tree
in validating isolation and retention candidates. (How-
ever, the worst case behavior does not appear to occur in
practice; in trials with our prototype using several lan-
guages, error recovery executes as fast as the analysis
of correct structure.)

VI. PRESENTING ERRORS

The previous sections have concentrated on detecting,
isolating, and refining the program representation in
the presence of errors. While an effective treatment of
errors is important to the analysis algorithms and other
tools in the ISDE, ultimately it is the comprehensible
presentation of errors to the user that determines the
effectiveness of a recovery.

Batch error recovery based on a correcting strategy
typically uses information about the repair to construct
an error message to explain the correction (and hope-
fully the error itself) to the user. A history-based ap-
proach provides a simpler and more effective method for
communicating with the user: included among the un-
incorporated edits is the cause of the problem; in prac-
tice the isolation and refinement strategies are often ef-
fective in producing a set of unincorporated errors that
includes all and only the actual errors.

In a history-based error recovery, the obvious way
to present the recovery result to the user is to visu-
ally indicate the changes that were not successfully
incorporated.10 Since this interface has the user’s own
changes as its vocabulary and naturally correlates ac-
tual changes with the displayed indication of the prob-
lem, it subsumes and improves upon the conventional
technique of generating explanatory messages.

Figures 1 and 2 suggest one way in which invalid
textual insertions and deletions can be presented, us-
ing the difference between the current and the previous
(correct) contents of the tokens in the affected region.11

More elaborate presentations of the accrued changes,
involving color, side-by-side comparisons, etc. can be
provided using available information about the unincor-
porated material. The presentation attributes are com-
puted when unsuccessful analysis results are discarded
from a node; in Figure 10, the call

node!compute_presentation(reference_version)

10In our experience, users do not benefit from a visual presentation
of the isolation regions.
11The user may not correct the error by the next analysis, and may

update the location containing the error without correcting the prob-
lem. Thus in composing the presentation, the recovery should com-
bine new modifications with the existing display until the error is fi-
nally corrected (or the region is removed from the program).

indicates the computation of presentation attributes for
any user changes local to node. The specific textual or
structural changes to node can be extracted from its lo-
cal history log [23].

VII. EXTENSIONS

In this section we summarize a number of extensions
to the basic history-sensitive error recovery technique.

A. Structural Editing

If the user is permitted to perform arbitrary struc-
tural editing, then the program structure is no longer
guaranteed to be valid, even after an analysis is per-
formed. However, unincorporated structural edits rep-
resent all and only the points where the structure is
not correct—the structure remains ‘piecewise’ correct.
Isolation, refinement, and error marking can all be
extended to handle persistent invalid structure repre-
sented in this manner. (The presentation of structural
errors to the user is simplified by the presentation of a
parallel structural view alongside the textual presenta-
tion of the program.)

There is a distinction between the fixed arity model of
nodes previously presented and a model where, in the
case of a structural error, the number of children as-
signed to a given symbol is permitted to vary. The flex-
ibility of the latter model is required to represent cor-
recting strategies in large text insertions (Section VII-
F). We can simulate the effect of a varying number with
fixed arity nodes by using the sequence representation
described in Section V-D; in the case of errors this is
used for uniformity in the structural representation, not
for performance reasons. (The number of children of a
given node is still assumed to be effectively bounded in
the case of a structural error.) In all cases, nodes are
typed by their role in the grammar; both missing infor-
mation and malformed (variable arity) structural errors
can be handled as completing productions for the appro-
priate grammar symbol.

B. Whitespace

Explicit whitespace material can be integrated into
the persistent program structure of an ISDE through
grammatical transformations or extensions to the in-
cremental parser [32]. Either approach can be used
with the recovery techniques described here, which re-
quire only minor modifications to enable the ‘parsing’ of
whitespace material during recovery.

The exception to this is the handling of leading white-
space during out-of-context analysis. In the top-level
program representation, any explicit whitespace mate-
rial that precedes the first terminal symbol can be rep-
resented as following the bos pseudo-token. In an out-
of-context analysis, the same phenomenon may occur;
however in this case the bos token is temporary. At the
conclusion of a successful out-of-context analysis, any
leading whitespace must be re-integrated with the pre-
ceding subtree; this may require merging two white-
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space sequences. (Alternatively, the absence of newly-
formed leading whitespace can be introduced as one of
the conditions for a successful out-of-context analysis.)

C. Generalized Incremental Lexing

Certain features of the lexical description language,
such as arbitrary lookahead, multiple start states, and
atomic sequences [19], can complicate error recovery.
These features introduce additional dependencies be-
tween tokens, restricting the conditions in which an iso-
lation or refinement candidate is acceptable. (Actual
inter-token dependencies are usually trivial—no reduc-
tion in the power of isolation or refinement due to lexical
invariants occurs in practice.) Here we discuss one such
feature, atomic sequences, to illustrate the effect on the
recovery algorithms.

In choosing both isolation candidates and subtrees
for analysis retention, the leftmost and rightmost to-
kens must be in singular sequences (i.e., not part of any
non-trivial atomic token sequence). This condition must
hold in both the current and previous version of the pro-
gram. In testing a subtree for out-of-context analysis,
this condition is checked in the previous structure only;
during the out-of-context analysis an attempt by the in-
cremental lexer to construct an atomic sequence span-
ning the right edge of the subtree will result in an error
cause a recursive recovery.

D. Non-deterministic Parsing

Non-deterministic incremental parsing [21] can also
be used with history-sensitive error recovery. The pri-
mary change needed to support IGLR parsing is an ex-
tension of the isolation boundary test to ensure that
each non-deterministic region is treated as an atomic
unit. Partial analysis retention and out-of-context pars-
ing have similar restrictions. (This has no practical ef-
fect on the efficacy of the recovery, due to the small size
of these regions in actual programs.)

E. Severity Levels

The isolation and refinement methods described ear-
lier treat all unincorporated modifications identically.
However, in some cases the recovery can distinguish be-
tween modifications known to be errors and modifica-
tions which it cannot prove correct or incorrect. When
a change remains unincorporated because the suffi-
cient conditions for partial analysis retention or out-
of-context analysis were not met, any unincorporated
changes in the affected subtree may be valid, but analy-
sis limitations will cause them to be treated as errors.
The recovery process can expose this additional infor-
mation by assigning an integer severity level to each un-
incorporated change. The interpretation of these lev-
els will be heuristic, but an appropriate choice in their
translation to presentation characteristics can assist
the user in distinguishing actual problems from incom-
plete or insufficient analysis results.

F. Recovery for Large Insertions

Insertions of large text strings mimic batch parsing,
since no previous history for such material exists. Er-
ror recovery within such a region is limited to batch
techniques.12 Either correcting or non-correcting meth-
ods may be applied. (In the case of a correcting strat-
egy, persistent ‘error’ nodes must be introduced into the
representation to model deviations from valid syntax;
see Section VII-A above.) Recovery methods applied to
large insertions must operate only within the bound-
aries of the inserted material; in particular, ‘stack cut-
ting’ and right context acquisition must treat material
outside the inserted region as read-only.

VIII. CONCLUSION

This paper presents a non-correcting approach to the
detection and presentation of syntactic errors that is
suitable for use in an interactive and incremental soft-
ware developement environment. Unlike previous tech-
niques, it uses the contents of the development log to
correlate the modifications actually made by the user
to the errors detected in the program. Unlike batch
non-correcting strategies, it precisely identifies the lo-
cation of errors, including errors involving closing syn-
tax. History-sensitive error recovery can be incorpo-
rated easily into existing algorithms for incremental
lexing and parsing. The approach is itself incremental,
requires no language-dependent information or user in-
teraction, and provides a more accurate and informative
report than any previous approach to error recovery.
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[28] J. M. Larchevêque, “Optimal incremental parsing”, ACM Trans.
Program. Lang. Syst., vol. 17, no. 1, pp. 1–15, 1995.

[29] Carlo Ghezzi and Dino Mandrioli, “Augmenting parsers to sup-
port incrementality”, Journal of the ACM, vol. 27, no. 3, pp. 564–
579, Jul. 1980.

[30] Pierpaolo Degano, Stefano Mannucci, and Bruno Mojana, “Effi-
cient incremental LR parsing for syntax-directed editors”, ACM
Trans. Program. Lang. Syst., vol. 10, no. 3, pp. 345–373, Jul.
1988.

[31] Luigi Petrone, “Reusing batch parsers as incremental parsers”,
in Proc. 15th Conf. Foundations Softw. Tech. and Theor. Com-
put. Sci., Berlin, Dec. 1995, number 1026 in LNCS, pp. 111–123,
Springer-Verlag.

[32] Tim A. Wagner and Susan L. Graham, “Modeling explicit white-
space in an incremental SDE”, 1997, Submitted to Software—
Practice & Experience.

[33] Tim A. Wagner, Practical Algorithms for Incremental Software
Development Environments, PhD thesis, University of Califor-

nia, Berkeley, 1997, Available as technical report UCB/CSD
97/???

Tim A. Wagner received his BSE in Computer
Science from Princeton University in 1989 and
an MS degree from the University of Califor-
nia, Berkeley, where he is currently complet-
ing his PhD in Computer Science. He has been
a member of the Pan and Ensemble research
groups while at Berkeley. His research inter-
ests include incremental language analysis for
software development environments as well as
compiler optimizations and systems-level sup-
port for Internet-based execution. He is a mem-

ber of Tau Beta Pi and a student member of IEEE and ACM.
E-mail: twagner@cs.berkeley.edu.
URL: http://http.cs.berkeley.edu/̃ twagner

Susan L. Graham is a professor in the Com-
puter Science Department at the University of
California at Berkeley. And some more bio text
here, it has to go on for some time in order for
the badly-written macro that they used to for-
mat this region to actually lay out the text with-
out splitting individual words letter by letter.
In fact it’s quite amazing how their macro per-
forms. Or perhaps one should say doesn’t per-
form, given the results. Now we add one more
sentence to force the email line below the pic-

ture, so that is looks more normal.
E-mail: graham@cs.berkeley.edu
URL: http://http.cs.berkeley.edu/̃ graham


