
Designing an XML-based Exchange Format for Harmonia 1

Marat Boshernitsan and Susan L. Graham
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776 USA

fmaratb,grahamg@cs.berkeley.edu

Abstract

In this paper we present our design for a program data
exchange format for Harmonia, a framework for construct-
ing language-sensitive interactive CASE tools. We discuss
the various design issues we faced while developing an en-
coding for the syntax tree informationin the XML format, in-
cluding chosing an appropriate encoding, the generation of
data schemas based on programming language syntax, and
representing program text along with its structure.

1. Introduction

One of the greatest challenges facing designers of new
CASE tools is ensuring that their tools work “en suite” with
other development tools such as editors, viewers, browsers,
compilers, debuggers, etc. A similar problem is faced by
CASE tool researchers who wish to benefit from the exist-
ing artifacts of tool buildingsuch as program parsers and an-
alyzers. One solution to this problem is development of a
common format for exchanging the data about programs. In
this paper we present an XML-based interchange format be-
ing designed for the Harmonia tool-building framework de-
veloped at University of California at Berkeley.

The Harmonia framework is a collection of libraries and
APIs for constructing interactive language-based program-
ming tools. A distinguishingfeature of the Harmonia frame-
work is its reliance on incremental program analysis tech-
nology which maintains a fully analyzed representation of
a program as it is being manipulated [6]. The Harmonia
framework is multilingual, simultaneously supporting many
languages 2. The Harmonia framework also provides bind-

1This research was supported in part by NSF grant CCR-9988531, and
by an NSF Fellowship to Marat Boshernitsan.

2It should be noted that the languages handled by Harmonia are primar-
ily those that have a syntactic and semantic structure akin to programming
languages. Since there is no generally-acceptedword for artifacts written in
those languages, we use the term ”programs”. The context should indicate

ings for many popular programming languages including
C++, C, Java, Emacs Lisp, and Tcl, allowing for rapid pro-
totyping of programming tools of varying complexity.

The exchange format for Harmonia needs to cater both
to the needs of small tools that operate on individual source
files and to the needs of larger systems which manipulate
entire software projects. Additionally, the exchange for-
mat should allow communication both among the tools con-
structed within the Harmonia framework, and with other ex-
isting tools that do not employ Harmonia technology.

This short paper considers the issues of data integration
among these various tools and presents an exchange format
we are designing to meet the requirements above.

2. Program Representation in Harmonia

Since one of the requirements for the Harmonia exchange
format is to facilitate communication among tools built
within the framework, the proposed format needs to model
the program representation as it is implemented within Har-
monia. The internal program representation in Harmonia
is a syntax tree constructed (and incrementally maintained)
from program source code by a syntactic analyzer (parser)
provided by the framework.

As Harmonia is a multilingual framework, the parser is
driven by a declarative specification of the language gram-
mar and the syntax tree produced by the parser is, in fact, a
concrete syntax tree whose shape is dictated by that same
grammar specification. (This feature will come into light
again when we discuss the exchange format schemas later
in this paper). However, the Harmonia framework employs
two special techniques for abstracting the grammar: a vari-
ant of the EBNF [9] notation for expressing sequences and
optional productions, and the GLR parsing technology [5]
which transparently incorporates ambiguity, including un-
bounded syntactic lookahead. Our approach lets us ex-
press language grammars at a fairly abstract level without

when the discussion pertains only to programming languages.

1

the typical contortionsassociated with producing a grammar
amenable to traditional parsing techniques. In fact, we use
the terms syntax tree and abstract syntax tree (AST) inter-
changeably in this paper, reflecting their synonymity in the
Harmonia framework.

Since Harmonia syntax trees serve as the sole represen-
tation for manipulation and presentation of programs, the
parser retains all the keywords and punctuationwithin a tree.
It is generally recognized that even when pretty-printing
is used for presenting source code, the ability to maintain
user-provided formatting is essential for good user inter-
face [1], and so special provisionsexist for maintaininguser-
provided whitespace and comments within Harmonia syn-
tax trees [8].

Further program analysis such as static semantics, flow
analysis, etc. may be provided by the Harmonia frame-
work if implemented for the particular programming lan-
guage. This analysis will typically annotate the AST, pro-
viding additional cross-references among syntax tree nodes
(e.g. links from the use of an identifier to its declaration)
and other information. Such annotated syntax trees are typ-
ically called Abstract Syntax Graphs (ASG). Figure 1 gives
an example of a Java program fragment undergoing the syn-
tax analysis to yield an AST, followed by the static semantic
analysis producing an ASG.

3. Exchange Format Choices

From the beginning we were determined to use
XML [10], an emerging standard for data interchange,
as an encoding for our exchange format. This resolution
led to a number of important decisions to be made about
representing syntax trees in XML.

3.1. Trees vs. Graphs

One option for encoding ASGs in XML is to employ
a general-purpose graph encoding similar to GraX [2] and
GxL [3]. In such an encoding, the MethodCall fragment of
the ASG in Figure 1 may be represented in XML as follows:

<node id=1 name=MethodCall>
<edge target=2 type=child/>
<edge target=4 type=child/>
<edge target=5 type=child/>
<edge target=6 type=child/>

</node>
<node id=2 name=Name>
<edge target=3 type=child/>
<edge target=42 type=declRef/>

</node>
<node id=3 name=IDENT text="f"/>
<node id=4 name=LPAREN text="("/>

IfThenElseStmt

if (VarRef) ExprStmt

MethodCall

Namecond

Name

f

(Args)

;

IfThenElseStmt

if (VarRef) ExprStmt

MethodCall

Namecond

Name

f

(Args)

;

to variable
declaration

to method
declaration

if (cond) f();

(b)

(a)

(c)

Figure 1. A Java program fragment repre-
sented as (a) text, (b) AST, and (c) ASG.

<node id=5 name=Args></node>
<node id=6 name=RPAREN text=")"/>

(Here, declRef is a reference to the method declaration node
in the syntax tree whose id is 42.)

Alternatively, we may choose to encode the syntax tree
directly, taking advantage of the fact that XML syntax is par-
ticularly well suited for representing hierarchical data. This
approach is also attractive since in Harmonia the tree struc-
ture (produced by the parser) is fundamental, as it is the basis
for all the manipulations. The attributes resulting from fur-
ther program analysis (and which indeed induce the graph
structure by providing additional links between syntax tree
nodes) are secondary and may, in fact, not be present at all if
semantic analysis services are not implemented for the par-

2

ticular programming language. The following illustrates the
tree-based encoding:

<node id=1 name=MethodCall>
<node id=2 name=Name declRef=42>
<node id=3 name=IDENT text="f"/>

</node>
<node id=4 name=LPAREN text="("/>
<node id=5 name=Args></node>
<node id=6 name=RPAREN text=")"/>

</node>

3.2. Designing the Exchange Schema

The XML standard requires that a schema called a docu-
ment type definition (DTD) be provided along with the XML
data, if the data is to be validated in any way by the process-
ing tool. For example, the encoding in the preceding exam-
ple may be described by a very simple XML DTD:

<!ELEMENT node (node)*>
<!ATTLIST node ...all attributes...>

The disadvantage of this DTD is that it imposes virtually
no restrictions on the shape of the syntax tree, making tools
using this exchange format amenable to malformed input.
Rather than requiring each tool to ensure the validity of the
incoming data (which may not be trivial in a multilingual
environment), we can employ a readily available validating
XML parser by encoding the syntax tree within a more rig-
orous DTD. We observe that the nodes in the syntax tree are
typed according to the grammar describing the shape of the
syntax tree, which is precisely the same grammar we use to
drive the syntactic analyzer (see Section 2). The following
is the running example in such typed encoding:

<MethodCall id=1>
<Name id=2 declRef=42>
<IDENT id=3 text="f"/>

</Name>
<LPAREN id=4 text="("/>
<Args id=5></Args>
<RPAREN id=6 text=")"/>

</MethodCall>

The DTD for this XML encoding can be generated automat-
ically directly from the same specification of the language
grammar used by the Harmonia parser and from the list of
attributes for each type of syntax tree node (also part of the
declarative language specification in Harmonia). For exam-
ple, given the following specification fragment for the Java
method call

MethodCall: Name LPAREN Expr* RPAREN

Name : IDENT

node Name { NodeRef attribute declRef }

the following DTD can be produced by a simple automatic
transformation:

<!ELEMENT MethodCall (Name, LPAREN,
Expr*, RPAREN>

<!ATTLIST MethodCall id ID #REQUIRED>
<!ELEMENT Name (IDENT)>
<!ATTLIST Name

id ID #REQUIRED
declRef IDREF #REQUIRED>

This approach essentially ties our exchange format to the
language grammar, requiring the exchange of schemas be-
tween the tools as well as the data. An alternative ap-
proach is to incorporate all supported languages into a sin-
gle schema. The DATRIX schema [4] is an example of this
design, supporting C, C++, and Java. That approach works
well for these languages because they share common con-
cepts. However, it is not practical for Harmonia, which sup-
ports many languages of vastly different styles.

3.3. Encoding Program Text

One of the applications of the Harmonia framework is
construction of language-sensitive front-end tools such as
editors, browsers, etc. that may need to manipulate program
source code, rather than its structural representation embod-
ied in the AST. For such tools, it is important to provide
the means to retrieve not only program structure, but also
various non-structural source elements such as comments,
whitespace, identifier spelling, punctuation, etc. While this
information can be made available as part of the encoded
tree structure, an attractive alternative is to simply “mark-
up” the source code with the structural information repre-
sented in the syntax tree:

<MethodCall id=1>
<Name id=2 declRef=42><IDENT
id=3>f<IDENT></Name><LPAREN
id=4>(</LPAREN><Args
id=5></Args><RPAREN id=6>)</RPAREN>
</MethodCall>

An advantage of such an encoding (as opposed to, for exam-
ple, encoding a node’s textual content as one of its attributes)
is that a tool interested in program text only needs to strip
off XML tags, whereas a tool that only cares about program
structure may safely ignore the text.

3

4. Conclusions and Future Work

In this short paper we presented the exchange format cur-
rently being developed for the Harmonia framework. Our
design embodies a number of decisions, the most signifi-
cant of which is the generation of exchange format schemas
directly from language grammars, utilizing the very same
specification that was used to construct the language parser.

This design raises a number of important questions which
we plan to investigate further as the development pro-
gresses:

� Schema and grammar evolution. Since the exchange
format is based on the language grammar, we need to
provide a way for tools that utilize different grammars
for the same language (or, even more likely, differ-
ent versions of the same grammar) to make sense of
each other’s data. We believe that this issue can be
addressed by employing readily available XML trans-
formation tools based on the XSLT transformation lan-
guage [11].

� Data granularity. Our exchange format provides a
considerable level of detail that may not be required by
some tools. Many high-level modeling tools may only
be interested in the “declaration level” or even “archi-
tecture level” facts about the program, and while such
data may be computed and incorporated into the syntax
tree by the Harmonia framework, transporting the en-
tire AST (and indeed computing the entire AST) may
prove to be unnecessarily expensive.

� Incorporating revision information. Among other
services, the Harmonia framework provides a very
fine-grained versioning mechanism capable of keep-
ing track of structural and textual modifications to the
source program [7]. Some version-aware applications
may require access to this data, while other tools may
wish to ignore it. To facilitate this task, we intent to
augment the presented exchange format to incorporate
revision information.

References

[1] M. de Jonge. A pretty-printer for every occasion. In Proceed-
ings of the Second International Symposium on Constructing
Software EngineeringTools, pages68–77, Limerick, Ireland,
June 2000.

[2] J. Ebert, B. Kullbach, and A. Winter. GraX—an interchange
format for reengineering tools. In Proceedings: Sixth Work-
ing Conference on Reverse Engineering, pages 89–99. IEEE
Computer Society Press, 1999.

[3] R. C. Holt, A. Winter, and A. Schürr. GXL: Towards a Stan-
dard Exchange Format. Fachberichte Informatik 1–2000,
Universität Koblenz-Landau, Universität Koblenz-Landau,
Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2000.

[4] S. Lapierre, B. Laguë, and C. Leduc. Datrix source code
model and its interchange format: Lessons learned and con-
siderations for future work. In Workshop on Standard Ex-
change Format, Limerick, Ireland, June 2000.

[5] M. Tomita. Efficient Parsing for Natural Languages.Kluwer
Academic Publishers, 1985.

[6] T. A. Wagner. Practical Algorithms for Incremental
Software Development Environment s. PhD thesis,
University of California, Berkeley, 1997. Available as
technical report UCB/CSD–97–946.

[7] T. A. Wagner and S. L. Graham. Efficient self-versioning
documents. In CompCon ’97, pages 62–67, San Jose, CA,
Feb. 1997. IEEE Computer Society Press.

[8] T. A. Wagner and S. L. Graham. Modeling explicit
whitespace in an incremental SDE, 1997. Submitted to
Software—Practice & Experience.

[9] N. Wirth. What can be do about the unnecessary diversity
of notation for syntactic definitions? Communications of
the ACM, 20(11):882, Nov. 1977.

[10] Extensible markup language (XMLTM).
http://www.w3.org/XML/.

[11] XSL tranformations. http://www.w3.org/TR/xslt.

4

