Languages and Interactive Software
Development *

Susan L. Graham

Computer Science Division — EECS, University of California

Berkeley, CA 94720 USA

Abstract. Most software is developed using interactive computing sys-
tems and substantial compute-power. Considerable assistance can be
given to the developer by providing language-based support that takes
advantage of analysis of software artifacts and the languages in which
they are written. In this paper, some of the technical challenges and new
opportunities for realizing that support are discussed. Some language
design issues that affect the implementation of language-based services
are summarized. The paper concludes with some proposals for assisting
user understanding of language documents.

1 Introduction

The development and maintenance of software has evolved from the days of
punched cards, long turnaround, and — by today’s standards — small, slow, com-
puters, to a world in which developers work interactively, using visually and
audibly rich workstations and having network access to information. As the
technology has changed, languages, tools and development practices have fol-
lowed an evolutionary path. Although researchers have proposed a variety of
useful and visionary approaches to exploiting the benefits of interaction [5, 7,
13, 14, 15, 23, 27], common practice has lagged behind. One of the reasons is
the effort and expense of building interactive services for each new language or
environment.

Powerful interactive systems create both technical challenges and new op-
portunities for providing language-based services. In this paper we survey some
of the technical issues that arise in providing language support in interactive en-
vironments. We also consider some of the ways in which the heritage of off-line
batch processing still influences the design of languages and tools, and suggest
some departures from past practice.

By the word language, we will mean formal languages, not natural, spoken
languages. Developers use many such languages in their work. The most obvious

* This research was supported in part by the Advanced Research Projects Agency
of the U.S. Department of Defense under Grant MDA972-92-J-1028, and by the
National Science Foundation under Infrastructure Grant CDA-8722788. The content
of the information does not necessarily reflect the position or the policy of the U.S.
Government.



are programming languages, or possibly design or specification languages. In
addition, most systems provide a variety of document description languages (for
example, TeX), and a plethora of command languages for interactive shells,
configuration management and build processes; information management and so
forth.

The discussion that follows draws most of its examples from programming
languages and uses a program as an example of a linguistic entity. Much of the
discussion pertains equally well to other kinds of languages, and to components
as well as complete entities. Indeed, it is for many of the other languages that
language-based support is absent. We will sometimes use the term language
documents to suggest the more general domain. In this context, one can think of
tools such as the formatter of a LaTeX document or the make program applied
to a Makefile as a kind of compiler or interpreter.

The potential for language-based support has been demonstrated in many
single-language environments. Notable among them are LISP and Smalltalk sys-
tems. Our interest is in making the benefits more easily available for other lan-
guages. One of the ways to make language-based services more widely available
is to develop language-based tools that are description-driven, that is, instanti-
ated by specifying a particular language. That approach is facilitated by the use
of formal declarative specifications as much as possible, to minimize recoding.

The Ensemble project at Berkeley is investigating the technology to provide
interactive language-based services for both formal languages and multi-media
natural language documents. Many of the ideas and observations in this paper
are the outgrowth of that research effort and its predecessors, the Pan project [4]
and the VorTeX project [6].

In the remainder of the paper, we first sketch some of the language-based
services we have in mind. Next we describe some of the technical issues that
arise in interactive language processing, followed by a discussion of the effect
of certain language design choices on that processing. We highlight two issues
that demand special attention in an interactive environment — the consequences
of incomplete information, and the nature of document presentation. Finally,
we consider the use of language services for user understanding of language
documents.

2 Interactive Language-based Services

One of the important characteristics of an interactive system is the ability of a
user to engage in a dialogue with the system. That property is exploited in a
modest way by contemporary text-editors, such as Emacs [22], that incorporate
services that check well-formedness properties of the document being edited and
assist the user in discovering and correcting mistakes. Two familiar examples are
checking natural language spellings and detecting unmatched bracketing char-
acters such as parentheses. Using the Emacs extension language, it is possible to
define language modes that extend checking to other syntactic forms, and also
provide some assistance in introducing those forms.



The kinds of language-based services we have in mind are in keeping with
the examples just given. The system “understands” the languages in which a
document is written and can respond accordingly. A rich dialogue can ensue of
the system knows not only syntactic properties of the language but also some
semantic properties 2. Even greater benefits can be achieved if the system can
extend its services to documents that are compound, both in the sense of con-
taining multiple languages, and in the sense of having structure and relationships
that transcend a single file or storage unit.

Our emphasis in this paper is on services that require fine-grained structure
and analysis. “In-the-large” services at the granularity of modules, chapters,
functions, etc. are equally valuable, but involve a different set of issues and
engineering decisions.

Consider the services of an interactive editor. A text editor deals with the
language of text, consisting of characters, words and lines. (In some direct ma-
nipulation systems, that language is enriched to include fonts, sizes, colors, and
other format-related attributes.) A program with a textual representation can
be written and modified as a textual document. Among the other services offered
by a text editor are search and navigation operations, such as “move to the next
line”, or “replace all occurrences of foo by bar”.

If the program is regarded as a document in the programming language
rather than the language of text, then similar services can be provided in that
language, for example “move to the next variable”, or “rename (definition and
uses of) type fooType as barType within the innermost scope in which fooType
is defined”. Thus textual navigation and search /replace commands are extended
to linguistic forms of those operations. Another example is to extend textual
notions of cut/paste to structural or semantic operations.

In order to support structural and semantic versions of text operations, the
system must maintain information about the syntactic and semantic structure
of the document. Once linguistic information is available, new services can be
provided. Familiar examples include highlighting or elision of structural compo-
nents, formatting, class hierarchy navigation, and call-graph browsing.

The opportunity also exists to provide new operations based on information
derived from analysis or user annotation. Van De Vanter [25] gives the following
example. Many programs contain both mainstream problem-solving code and a
possibly substantial amount of code intended to handle special cases, errors, and
other infrequently occurring situations. If a developer i1s attempting to under-
stand an unfamiliar program, then it is the mainstream code that is of interest
initially. Understanding is enhanced if the developer can visually identify the
mainstream code and downplay the rest. Identifying which code is mainstream
might require the combined efforts of automated analysis and annotation by the
author of the program, probably at some earlier time. If the identification of
mainstream code is available, browsing and display techniques can be used to
show it to the developer.

2 In keeping with the use of the term in compilation, we use the term semantic to refer
also to some properties that are syntactic in the traditional linguistic sense.



3 Interactive Language Processing

In order to provide interactive language-based services, a system builds a struc-
tural description of the program, augmented with annotations, links, and auxil-
iary information. Early systems, such as the Cornell Program Synthesizer [24],
and Mentor [8] required that the system maintain a structurally well-formed pro-
gram, by providing a structure editor interface that limits the user to structural
modifications. Later syntax understanding systems support text editor inter-
faces 3. Structure is inferred by analysis (namely, some form of parsing). Policies
for analysis include analysis on user demand, periodic analysis (e.g. when the
user pauses), continuous analysis, or analysis when some structural operation
such as navigation is invoked. In many of these systems, structure also can be
provided explicitly through the use of templates.

The reason that early systems require structural well-formedness is not only
to eliminate the need for structural analysis, but, more importantly, to facili-
tate other structurally-based forms of analysis. For example, traditional kinds of
static semantic checking might be carried out using some sort of attribute gram-
mar technology on an abstract syntax tree. Even less formally specified analyses
tend to be based on a structural representation.

Many interactive systems are based on the use of incremental analysis algo-
rithms. An incremental algorithm is one that updates existing information by
first determining what has been modified and then propagating the consequences
of the modification. Historically the motivation for incremental algorithms as op-
posed to recomputation was performance — to reduce the number and extent of
updates when local changes are made to large documents. As computing speeds
have increased, the performance issue has declined in importance.

There are other important benefits of incremental algorithms. By determining
what has changed, a system can provide a variety of change-related user feedback.
(An example is highlighting on a screen.) More importantly, by determining what
has not changed, a system can preserve information that cannot be reconstructed
by analysis, such as user annotation, or other information provided by external
agents. Incremental algorithms allow changes to be made in place, rather than
the copying that would otherwise be required to capture changes by comparison.

Using incremental analysis instead of ‘batch’ analysis has two important char-
acteristics. First, the processing order is largely temporal rather than structural.
In other words, change-based analysis or services propagate from the changes
outward rather than from the beginning of the document forward. Consequently,
processing algorithms that depend on seeing one piece of information before an-
other achieve “before-ness” differently in non-incremental and incremental set-
tings. Furthermore, incremental algorithms need special mechanisms to handle
non-adjacent textual ordering. Second, it is commonplace for processing to be
done with incomplete information and incomplete documents, either because the
program is only partially developed, or because conceptual changes are made in
a sequence of steps.

? Later versions of the Cornell system support some text editing as well.



4 Language Issues

There are a variety of language design issues that complicate interactive language
processing. Some of them are issues that cause difficulties for formal specifica-
tion of languages. Often those same features complicate specifications used for
compilation. An example is the need for unbounded lookahead to make certain
parsing decisions. The more interesting issues in the context of this paper are
the ones in which the temporal processing order comes into play.

In considering the material in this section, the knowledgeable reader might
object that the language design issues are all problems that the language design
community recognizes and can avoid. However, to be most useful, language-based
services should be available for «ll languages. In fact, it is for badly designed
languages that help is needed most! Additionally, designers of other kinds of
languages seem to be making the familiar mistakes and then some.

4.1 Information Feedback
Conventional language analysis is decomposed into three stages

1. lexical transformation of a sequence of characters — screened or filtered to
remove formatting information and commentary — into a sequence of tokens,

2. syntactic transformation of a token sequence into phrase structure,

3. “semantic” analysis to achieve bindings, name resolution, and attributions.

Although these stages can be composed into a single syntax-directed analy-
sis in which lexical analysis and semantic analysis are embedded, the architec-
ture used by many optimizing or retargetable compilers and by most interactive
language processors is to construct an explicit structural representation first,
and then to determine bindings and attributions by traversal of the structure,
perhaps using some sort of attribute evaluation formalism. If the stages are
independent, then there are known techniques to carry out each stage incremen-
tally [2, 3, 18, 21]. However, if earlier analyses require feedback from later ones,
then a multi-phase analysis becomes awkward.

Example: C/C++ Type Names
Consider the fragment
a(*b);

If a names a function, then the fragment denotes a call of function a with argu-
ment *b. However, if a denotes a C type, for instance in a context containing

typedef int a;

or a C++ class, then the fragment defines b to be a variable whose values are
pointers to entities of the type or class denoted by a.



It is normally desirable to use different structural representations of the call
a(*b) and the variable definition a(*b). Yet the structural analysis of the frag-
ment needs information about the binding of a that is determined by the later
semantic analysis phase, which in turn requires a structural traversal. The need
to know typedef bindings in order to determine structure also exists in C and
C++ compilers. Since the textual occurrence of the typedef precedes uses of
the defined identifier, maintaining binding information during parsing solves the
problem, although at the possible cost of more complicated specification and
additional mechanism.

In an interactive environment, in which attribution follows structural analy-
sis 1n order to support incrementality, typedef bindings are necessarily a special
case with a separate mechanism. Furthermore, if the contextual information
is changed (for instance, the typedef is removed or its identifier spelling is
changed) then not only must all fragments containing uses of a bound to the
typedef be reparsed, but all attributions using attributes of a must be reeval-
uated. The reevaluation is initiated as a consequence of dependency informa-
tion maintained by the incremental semantic evaluator. One way in which the
reparsing can be triggered is by using a special token, say TYPE-ID, for identifiers
designating types, and by replacing appropriately-bound occurrences of ID by
TYPE-ID or vice-versa when type definitions are added or removed, in order to
force a syntactic change event. Those replacements, in turn, require the existence
of semantically analyzed bindings to reflect the scope rules of the language.

Example: User Operator Priority Settings

In several languages, notably PROLOG, ML, FIDIL [16], users can define a
new infix operator and specify a parsing priority for it. The priority determines
the structure of each expression in which the operator is used. The priority is
normally associated with the operator during the attribution phase, and the
operator definition usually depends on scope analysis. Thus many of the same
issues arise as in the previous example. If there are a small number of possible
priorities, as there are in FIDIL, then the token-based solution outlined in the
earlier example can be used, by introducing a separate user-defined-operator
token for each priority. However if, as is the case for PROLOG, and for some
implementations of ML, there are a large (effectively unbounded) number of
levels, then a complicated reparsing strategy may be required.

4.2 Contextually-determined Information

In some older languages, notably FORTRAN, PL/I, and some dialects of BASIC,
keywords are not reserved, and the use of an identifier as a keyword is inferred
from context. Although methods exist to do the appropriate analysis, they are
not necessarily supported by description-driven tools.

The use of embedded sublanguages is also determined by context. One ex-
ample is formatting specifications in output directives. Another is math mode
in TeX. Typically, these sublanguages have their own syntactic and semantic



rules. Syntax analyzers in translators often handle sublanguages by maintain-
ing a global state variable and switching among analyzers as the sublanguage
boundary 1s crossed. Incremental analyzers must also be able to determine that
state, but not by use of a global variable. Instead the sublanguage boundaries
are part of the structure, either in the form of attributions, or in the form of
links to separate structures. The treatment of sublanguages must be robust if
the determining contextual cues are unavailable.

4.3 Formatting-related Syntax Rules

Some language designers introduce syntax rules —intended to provide readability
or typing convenience for the user — that may complicate language specification
or processing. The problems with FORTRAN whitespace insensitivity are well
known to compiler writers.

Ends of lines are often used as delimiters, sometimes in complicated ways.
FORTRAN, COBOL, and UNIX shell languages are examples of line-oriented
languages in which escape symbols are required to prevent textual line breaks
from being treated as logical end-of-statement delimiters. In Icon [12], a line
break sometimes serves as a statement delimiter; but only if the last token before
the line break and the first token after it are not part of the same construct.

In Haskell [17] indentation can be used to indicate nesting, in place of explicit
bracketing tokens, thereby making some line breaks, white space, and column
positions significant. In make [9], commands must be indented by at least one
tab character (and not by the visually indistinguishable sequence of blank char-
acters). In the former case, the reader is helped at the expense of the language
tools. In the latter case, the opposite is true.

4.4 Preprocessors and Macros

Macros are a metalanguage that is often used for abbreviation or language ex-
tension. If a macro language and the language in which it is used have the same
lexical and syntactic rules, as 1s the case in many LISP dialects, then the major
complication in incremental analysis comes from the treatment of errors. Macro
expansion and analysis of the expanded language can be intermixed, as long as
the system retains enough information to replace the expansions when a macro
definition is changed. That information is also needed to support selective view-
ing of macro expansions. Since the expansions are structurally well-formed, both
replacement and selective viewing reuse mechanisms available for other purposes.

If the macro language transforms the text to which it is applied at the char-
acter level, or even at the token level, as is the case with macro processing
embedded in preprocessors such as the C preprocessor (cpp), then the situation
is more difficult. The nature of such a preprocessor is intrinsically a sequential
rewriting of the text. Since expansion in different contexts may create different
structure, an unexpanded macro call can cause syntactically invalid text in the
language to which the macros are applied. Also, since expansion causes changes



in structure, selective viewing of expansions and macro redefinition become more
complicated for the system to support.

Finally, if arbitrary file inclusion 1s incorporated, as it is in cpp, then the
benefits of sharing copies of expansions, which are an important engineering
consideration, may be difficult or impossible to achieve. Since multiple inclusions
of the same file are used in the absence of linguistic support for interface modules,
and those files are often large, the space required for multiple copies and the time
for multiple analyses can be significant.

5 Incomplete Documents

The language design discussion illustrates the fact that language analysis often
uses information that is available in a complete, well-formed document, but may
be missing in a document that is being developed or modified. In a translator,
if a document is incomplete or not well-formed then it is in error. Syntactic and
semantic error processing mechanisms are invoked, and appropriate diagnostic
information is generated for the developer.

However, from the developer’s point of view, incompleteness or partial mod-
ification are different from errors. Suppose we refer to all these situations by the
less-loaded term anomalies. Since anomalies are a normal occurrence, system
services should be maintained in their presence. That has the following conse-
quences for the design of an incremental system.

Partial structure and analysis must be available. Structure and attribution-based
services such as navigation, display, and querying should continue to be avail-
able. Change-based analysis provides considerable help in this regard, since the
structure and properties of unchanged components can be retained even if they
are part of anomalous constructs.

Knowledge about anomalies is important to the user. Since the anomalies are
part of the linguistic information about the document, linguistic services such
as navigation and highlighting should apply to them as well.

The user should decide when to resolve anomalies. If an interactive system is
to assist a developer, then the developer must be able to choose the order in
which to work. That means that the services must not degrade if anomalies are
unresolved. The requirement in early structure editors that syntax anomalies be
absent was an important factor in their lack of wide-spread use.

It is because of the need to support anomalies, that some of the language
design issues we have summarized are particularly problematical. If one is to
provide language-based services using description-driven tools, then language
features requiring special handling impose an additional barrier. Additionally,
a system that is robust in the presence of anomalies, must provide linguistic
services in the absence of linguistic information. For instance, the system must
choose some way to format a(*b) for display even if its structure is unknown,



and must have some reasonable policy about communicating type anomalies that
stem from a lack of binding information rather than a mistake on the part of the
developer. Van De Vanter, Ballance, and Graham [26] provide further discussion
of these issues.

6 Presentation and User Comprehension

An important part of the task of constructing and modifying language documents
is human comprehension of both their form (i.e. the use of the language) and their
content. The previous discussion has suggested some ways in which interactive
tools can assist developers in using a language. Interactive systems can also
assist developers in understanding the content of a language document. We will
touch on two kinds of assistance — better readability and better association and
preservation of auxiliary information. Space does not permit discussion of an
important third kind of assistance, namely better understanding of dynamic
behavior or of the output of language tools.

6.1 Presentation

The programming language research community has long realized that the same
language can be represented in more than one form. The notion of abstract
syntax goes back to the 1960’s, along with the pejorative reference to concrete
syntax as “syntactic sugar”. Nevertheless, one of the characteristics of most
language definitions is the inclusion of rather specific rules for their concrete
syntax. The reason for the precision of the definitions, of course, is that they
serve as input specifications for language-processing tools, notably compilers and
interpreters. That precision was essential in the days of punched cards and paper
tape.

The progression from keypunches to text editors to language-sensitive ed-
itors has done little to loosen the rules of concrete syntax. Syntax is usually
expressed as a sequence of ASCII characters. Font shifts (for example, embold-
ened keywords) and colors are sometimes used, and layout styles are sometimes
incorporated automatically. It is an easy matter to map those enhancements
back to an ASCII character sequence.

In an interactive computing environment, the user prepares and modifies a
language document on-line and also invokes a compiler, interpreter, or other lan-
guage processor on-line. There is no reason that the form of the language read
and written (and heard?) by the user need be the same as the input represen-
tation to a language tool, as long as an appropriate input representation can
be generated automatically from the human-created version. The user should
be able to use a representation that facilitates comprehension; not one that has
been designed to ease translation. On the other hand, the input to the language
translator need not be burdened with formatting-motivated syntax rules.

An interesting study by Baecker and Marcus [1] suggests some ways in which
appearance can affect human understanding of language documents. They de-
vised a variety of ways of presenting C programs to improve their readability.



An example appears in Figure 1. Many other researchers have proposed partic-

Encode phone number as a vector of digits, without
punctuation. Returns number of digitsin phone
number or FAL SE to indicate failure.

static bool

getpn(str)
char *str;
int i=0;

while (*str '="\0")
if (i >= PNMAX)
return FALSE;

Set pn to the digitsignoring spaces and dashes

if(*str1="" && *str 1="-")
if (0’ <= *str && *str <='9’)
pnli++] = *str —'0’;
else
return FALSE;

Fig.1l. A program presentation example from Baecker/Marcus [1, pg. 61]

ular stylistic choices of concrete syntax, formatting, and appearance to enhance
understanding. Studies such as that of Oman and Cook [20] demonstrate that
careful use of typographic effects can strongly influence how well programmers,
either novice or expert, understand a program.

The work of Baecker and Marcus is intended primarily for display, not for
interaction. By building interactive tools that treat appearance separately from
structure and content, styles of presentation can be designed for comprehension
and can be customized for user preferences. Concrete syntax can be defined to
facilitate tool building and not be cluttered with readability considerations.

To support presentations such as the one in Figure 1, the system must provide
high-quality typography and formatting, reordering of abstract syntax compo-
nents, and the ability to map back and forth between the presentation and the
components of the abstract syntax representation. In addition, the notion of or-
dering used for navigation must be carefully considered to avoid user confusion.

The Ensemble project at Berkeley is developing the technology to support
such separation of appearance. The structure, the semantics, and one or more
styles of appearance are formally specified for a language *. Appearance is spec-
ified by a presentation schema, which provide the rules that are applied incre-

* The conventional concrete syntax must also be specified, in order to pass langnage
documents into and out of the Ensemble system.

10



mentally as the document changes. The first version of the presentation system
is summarized in a conference paper [11]; a later version is described in Munson’s
dissertation [19].

6.2 Annotation

One common language feature intended for human comprehension is the com-
ment. In most text-based languages, comments are text as well, and are separated
from other constructs in the language by delimiters. Comments are normally ig-
nored by language translators or interpreters. Some researchers have proposed
systems of formal annotation as well, that are, in effect, an embedded sublan-
guage with formal properties.

If an interactive system supports separate mechanisms for presentation of
language documents, and if it supports structural representations of language
documents, then additional kinds of annotation become possible. A simple ex-
ample 1s to associate comments, whether formal or in natural language, with
semantically attributed structural components of the document, rather than
with textual positions. These annotations can remain bound to the structural
components (which might be important user abstractions) even if the textual
document changes. Furthermore, it is possible to use the richness of multimedia
to provide non-textual static or dynamic, or even audible comments, such as an
animation of the use of a data abstraction. By associating computable predi-
cates with the comments, mechanisms can be provided to discover and signal
their possible lack of validity as the document changes. It is also possible to use
increasingly common notions of hyperlinks to associate electronic information
outside the document with its entities and structures.

In this scenario, a program in its entirety consists of much more than the
instructions for an abstract execution engine. The input to a compiler or inter-
preter is obtained by extracting the relevant view in the appropriate represen-
tation. Interactive execution or debugging are easily incorporated in this point
of view.

Annotations can be provided by tools as well as by people. The semantic
attributes calculated by an incremental analyzer, or the attributes derived from
data flow analysis constitute annotations. As another example, execution pro-
filing data can be associated with components of a program and used both for
improved compilation and for focusing the developer’s attention.

An important property for a system that supports rich forms of annotation is
flexible access to the information. It 1s useful to regard an annotated document as
a semantically rich database, in which the information can be queried or viewed
as desired. The technical challenge is to support that behavior even though the
system representation of the information 1s not at all that of a database.

6.3 Information Retention

The final step in regarding a language document as a human-centered artifact
in which comprehension is an important property is the retention of information

11



over time. One of the ways change-based analysis can be used is to preserve a
language-based modification history, as opposed to the textual versioning sys-
tems in use today, and to retain the associated annotations. Some of the technol-
ogy needed for that kind of history is a consequence of the mechanisms used for
language-based undo services. Another often-suggested idea is to record, along
with changes to a document, cognitive information such as a design rationale
for the change. The impediments to realizing that idea are primarily nontech-
nical. The advantages of using a language-based approach lie in associating the
rationale with the change itself and not just its natural-language description.

Acknowledgements

Many of the ideas expressed in this paper are the outgrowth of collaborations
with research students and colleagues in the Pan project and the Ensemble
project at Berkeley. Bruce Forstall’s M.S. report [10] contains an extensive dis-
cussion of language specification issues from which some of the material in Sec-
tion 4 is drawn. Michael Van De Vanter’s dissertation [25] provides a wealth of
insights about the ways in which an interactive system can assist user under-
standing of language documents, some of which are summarized in Section 2 and
Section 6.

References

1. Ronald M. Baecker and Aaron Marcus. Human Factors and Typography for More
Readable Programs. Addison-Wesley, Reading, Massachusetts, 1990.

2. Robert A. Ballance, Jacob Butcher, and Susan L. Graham. Grammatical abstrac-
tion and incremental syntax analysis in a language-based editor. In Proc. SIG-
PLAN 88 Conf. on Programming Language Design and Implementation, pages
185-198, Atlanta, Georgia, June 22-24, 1988. Appeared as SIGPLAN Notices,
23(7), July 1988.

3. Robert A. Ballance and Susan L. Graham. Incremental consistency maintenance
for interactive applications. In K. Furukawa, editor, Proc. Fighth International
Conf. on Logic Programming, pages 895-909. The MIT Press, Cambridge, Mas-
sachusetts and London, England, June 1991.

4. Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter. The Pan
language-based editing system. ACM Transactions on Software Engineering and
Methodology, 1(1):95-127, January 1992.

5. David R. Barstow, Howard E. Shrobe, and Erik Sandewall, editors. Interactive
Programming Environments. McGraw-Hill, New York, 1984.

6. Pehong Chen, John L. Coker, Michael A. Harrison, Jeffrey W. McCarrell, and
Steven J. Procter. The VorTeX document preparation environment. In Proc.
Second Furopean Conf. on TeX for Scientific Documentation, Lecture Notes in
Computer Science No. 236, pages 32—54, Strasbourg, France, June 1986. Springer-
Verlag.

7. Reidar Conradi, Tor M. Didriksen, and Dag Wanvik, editors. Advanced Program-
ming Fnvironments. Number 244 in Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, New York, 1986.

12



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard Lang. Pro-

gramming environments based on structured editors: The MENTOR experience.
In David R. Barstow et al., editor, Interactive Programming Environments, pages
128-140. McGraw-Hill, New York, 1984.

. S. I. Feldman. Make—A Program for Maintaining Computer Programs. Bell Lab-

oratories, Murray Hill, NJ, 1978. In the Unix programmer’s manual, vol. 2.
Bruce T. Forstall. Programming language specification for editors. Master’s
report, Computer Science Division—EECS, University of California, Berkeley,
November 1991.

Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus pre-
sentation system. In SIGSOFT ’92: Proceedings of the Fifth ACM SIGSOFT Sym-
posium on Software Development FEnvironments, pages 130-138. ACM Press, De-
cember 1992. ACM Software Engineering News 17 (5), December 1992.

R. E. Griswold and M. T. Griswold. The Icon Programming Language. Prentice-
Hall, Englewood Cliffs, N.J., 1983.

Peter Henderson, editor. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, 1984.
ACM SIGPLAN Notices, 19 (5), and Software Engineering Notes 9 (3), May 1984.
Peter Henderson, editor. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, 1986.
ACM SIGPLAN Notices, 22 (1), January 1987.

Peter Henderson, editor. ACM SIGSOFT ’88: Third Symposium on Software De-
velopment Environments, 1988. ACM SIGPLAN Notices, 24 (2), Feb. 1989 and
Software Engineering Notes 13 (5), Nov. 1988.

Paul N. Hilfinger and Phillip Colella. FIDIL: A language for scientific program-
ming. Technical report, Lawrence Livermore National Lab., Livermore, CA, Jan-
uary 1988.

Paul Hudak and Philip Wadler. Report on the Functional Programming Language
Haskell, 1990.

Fahimeh Jalili and Jean H. Gallier. Building friendly parsers. In Conf. Record
Ninth ACM Symposium on Principles of Programming Languages, pages 196—206,
1982.

Ethan V. Munson. Proteus: An Adaptable Presentation System for a Software De-
velopment and Multimedia Document Environment. Ph.d. dissertation, Computer
Science Division — EECS, University of California, Berkeley, 1994. To appear.
Paul Oman and Curtis R. Cook. Typographic style is more than cosmetic. Com-
munications of the ACM, 33(5):506-520, May 1990.

Thomas Reps. Generating Language- Based Fnvironments. The MIT Press, Cam-
bridge, Massachusetts and London, England, 1984.

Richard M. Stallman. Emacs: The extensible, customizable, self-documenting dis-
play editor. In Proceedings, ACM SIGPLAN/SIGOA Symposium on Text Manipu-
lation, pages 147-156, Portland, Oregon, June 8-10, 1981. Published as SIGPLAN
Notices 16(6), June 1981.

Richard N. Taylor, editor. SIGSOFT °90 Proceedings of the Fourth Symposium
on Software Development Environments, Irvine, CA, December 3-5 1990. ACM
SIGSOFT Software Engineering Notes, 15(6), December 1990.

Tim Teitelbaum and Thomas W. Reps. The Cornell Program Synthesizer:
A syntax-directed programming environment. Communications of the ACM,
24(9):563-573, September 1981.

13



25. Michael L. Van De Vanter. User Interaction in Language-Based Fditing Systems.
Ph.d. dissertation, Computer Science Division — EECS, University of California,
Berkeley, December 1992. Available as Technical Report No. UCB/CSD-93-726.

26. Michael L. Van De Vanter, Robert A. Ballance, and Susan L. Graham. Coherent
user interfaces for language-based editing systems. International Journal of Man-
Machine Studies, 37(4):431-466, 1992.

27. Herbert Weber, editor. SIGSOFT "92 Proceedings of the Fifth ACM Symposium on
Software Development Environments, Tyson’s Corner, VA, December 9-11 1992.
ACM SIGSOFT Software Engineering Notes, 17(5), December 1992.

This article was processed using the IATRX macro package with LLNCS style

14



