
Spoken Programs

Andrew Begel, Susan L. Graham
Computer Science Division, EECS
University of California, Berkeley

Berkeley, CA 94720-1776

Abstract

Programmers who suffer from repetitive stress in-
juries find it difficult to spend long amounts of time typ-
ing code. Speech interfaces can help developers reduce
their dependence on typing. However, existing program-
ming by voice techniques make it awkward for program-
mers to enter and edit program text. To design a better
alternative, we conducted a study to learn how software
developers naturally verbalize programs. We found that
spoken programs are different from written programs in
ways similar to the differences between spoken and writ-
ten English; spoken programs contain lexical, syntactic
and semantic ambiguities that do not appear in writ-
ten programs. Using the results from this study, we de-
signed Spoken Java, a semantically identical variant of
Java that is easier to say out loud. Using Spoken Java,
software developers can speak more naturally by ver-
balizing their program code as if they were reading it
out loud. Spoken Java is analyzed by extending a con-
ventional Java programming language analysis engine
written in our Harmonia program analysis framework to
support the kinds of ambiguities that arise from speech.

1. Introduction

Many programmers who suffer from repetitive strain
injuries (RSI) and other more severe motor impairments
have difficulty staying productive in a work environment
that all but requires long hours typing code into a com-
puter. We are helping to lower these productivity barri-
ers by enabling developers to use speech to reduce their
dependence on typing. To program using speech, the
programmer must be able to verbalize both the program
and the actions taken in the programming process. In
this paper, we address verbalization of the programming

language. A spoken command language is a different
problem that is not described here.

Many possible verbalizations of written text are
amenable to speech recognition analysis: simply
spelling out every letter or symbol in the input, speak-
ing each natural language word, describing what the text
looks like, or paraphrasing the text’s meaning. Spelling
every word and symbol or describing the text is tedious
and requires prescriptive input methods to which hu-
mans would find it difficult to conform [16]. On the
other hand, excessive paraphrasing or abstracting the
meaning of written content may leave too many details
unspecified, and be incomprehensible to a non-expert.

Programming languages exist in a very similar space
to natural languages, save two significant differences.
Unlike natural languages, which have been spoken since
the beginning of time and written for several thou-
sand years, programming languages have only a written
form. Consequently, there is no naturally evolved spo-
ken form. Programming languages are also structured
differently from natural languages to be much more pre-
cise and mathematical. Punctuation, spelling, capitaliza-
tion, word placement, sometimes even whitespace char-
acters are critical to the proper interpretation of a pro-
gram by a compiler. Those details of the written form
must be inferred from the spoken form.

To design a spoken form of a textual programming
language, we need to shed light on the following ques-
tions: What would a programming language sound like
if it were spoken? How different would it be than the
language’s written form? If a particular programming
language could be spoken, would all programmers speak
it the same way? Would programmers who speak differ-
ent native languages speak the same program in differ-
ent ways? Programmers who verbalize only a program’s
natural language words might cause the spoken program
to become completely ambiguous. What would be a nat-
ural way to speak a programming language that also has



a tractable, comprehensible, and predictable mapping to
the original language?

Our goal is to enable input that is natural to speak,
but at the same time formal enough to leverage exist-
ing programming language analyses to discern its mean-
ing. This point in the design space retains some am-
biguity, but limits it so that analysis of the language is
still feasible. Note that our work is not about program-
ming in a natural language using natural language se-
mantics [10, 11, 12], but is about using features of natu-
ral language to simplify the verbal input form of a con-
ventionally designed programming language.

To learn how to design our new input form, we con-
ducted a study of programmers to identify how they
would speak Java program code without any training or
advanced preparation. We found that there are some sig-
nificant differences between written and spoken code,
categorizable into roughly four areas: the lexical, syn-
tactic, semantic, and prosodic properties of input. There
is considerable lexical ambiguity, since spoken text does
not include spelling, capital letters or an indication of
where the spaces in between the words belong. Syn-
tactically, the punctuation that helps a compiler analyze
written programs is often unverbalized, leading to struc-
tural ambiguities. In addition, some phrases from the
Java language prove difficult to speak out loud due to
differences in sentence structure with English. Seman-
tically, programmers speak more than the literal code;
they paraphrase it, and talk about the code they want to
write. Finally, we found that prosody is often used by
native English speakers to disambiguate similar sound-
ing phrases, but is not employed by non-native speakers.

Based on the study results, we designed a new dialect
of Java, called Spoken Java, that more closely matches
the verbalization in our study than does the original Java
language. In this program verbalization, programmers
speak the natural language words of the program, but
must also include verbalizations of some punctuation
symbols. Spoken Java is not a completely new language
– it has a different syntax, but it is semantically identi-
cal to Java. In fact, the language grammar is a super-
set of Java, with only eleven extra grammar rules. Each
of these additional rules maps easily onto a Java rule.
This syntactic similarity makes it possible for semantic
analyses based on parse tree structure to be constructed
from analyses built for the original Java language with-
out many changes.

Moving towards this more flexible input form in-
troduces ambiguity into a domain that heretofore has
been completely unambiguous. Spoken Java is consid-
erably more lexically and syntactically ambiguous than

Java. We have developed new methods for managing
and disambiguating ambiguities in a software develop-
ment context. In our new SPEED (SPEech EDitor) pro-
gramming environment, lexical ambiguities such as ho-
mophones (words that sound alike) are generated and
passed to the parser. Given a program with lexical ambi-
guities and missing punctuation, the parser can construct
a collection of possible parses with all possible interpre-
tations of the input [3]. Next, we exploit knowledge of
the program being written to disambiguate what the user
spoke and deduce the correct interpretation. Using pro-
gram analysis techniques we have adapted for speech,
we use the program context to help choose from among
many possible interpretations of a sequence of words ut-
tered by the user. Our research on the semantic aspects
of that analysis is still in progress.

In this rest of this paper, we discuss the experiment
we conducted, provide examples of what programmers
said for different kinds of language constructs, and dis-
cuss what these results mean and what they imply about
language design for a spoken programming language.
We then present our design for Spoken Java and give an
overview of the analysis required to understand it. The
paper concludes with a discussion of related work and a
short summary.

2. How Programmers Speak Code

We designed a study to begin answering the ques-
tions raised earlier. We asked ten expert programmers
who are graduate students in computer science at Berke-
ley to read a page of Java code aloud. Five of them
knew how to program in Java, five did not. (The latter
students knew other syntactically similar programming
languages). Five were native English speakers, five were
not. Five were educated in programming in the U.S.A.,
five were educated elsewhere.

The Java code was chosen to contain a mix of lan-
guage features: a variety of classes, methods, fields, syn-
tactic constructs such as while loops, for loops, if state-
ments, field accesses, multi-dimensional arrays, array
accesses, exceptions and exception handling code, im-
port and package statements, and single-line and multi-
line comments.

Each study participant was asked to read the code into
a tape recorder as if he or she were telling a second-year
undergraduate Java programming student what to type
into a computer. We chose this instruction over others to
try to anticipate the capabilities of the analysis system.
We did not want to have the participant assume that the
undergraduate knew the content of the code in advance,



nor did we want the participant to assume that the lis-
tener was completely Java- or computer-illiterate.

The recordings were transcribed with all spoken
words, stop words, and fragmented and repeated words.
Words with multiple spellings were written with the cor-
rect spelling according to the semantics of the program.

For the most part, despite different education back-
grounds or lack of knowledge of Java programming, all
ten of the programmers verbalized the Java program in
essentially the same way. However, each programmer
varied his or her speech in particular ways – each had
his or her own style. The variations and implications for
subsequent analysis are summarized as follows.

2.1. Spoken Words Can Be Hard to Write Down

On a lexical level, most programmers spoke all of the
English words in the program. Mathematical symbols
were verbalized in English (e.g. > became “is greater
than”). There was some variation among the individu-
als on the words used to say a particular construct. For
example, an array dereference array[i] could be “ar-
ray sub i,” “array of i,” or “i from array.” Here “sub”,
“of” and “from” are all synonyms for “open bracket.”
A given punctuation could be either “dot” or “period,”
either “close brace” or “end the for loop.”

Several classes of lexical ambiguity were discovered
during the transcription process.

• Many of the words spoken by participants are ho-
mophones, words that sound alike but have differ-
ent spellings. In the case of homophones, the same
word is recognized by a speech recognizer in sev-
eral different ways. For instance, “for” could also
be “4”, “fore” or “four”. The language token can
be interpreted depending on context (for example,
the keyword “for”, the number “4” or the identi-
fiers “fore” and “four”). Likewise, < spelled “less
than” is a keyword, but as “less then” is a keyword
followed by an identifier.

• Capitalization was not verbalized except some-
times as a comment about an identifier, such as
“that’s class with a capital c”. (The analysis must
then determine whether the speaker said the let-
ter ’c’ or the word ’see’). Most programming lan-
guages are case-sensitive – the inability to eas-
ily verbalize capitalization causes an ambiguity in
which there are two visible identifiers with the
same spelling having different capitalizations.

• Spaces between words are implied when the par-
ticipant is speaking, but when an identifier is

made up of several concatenated words, it was
unclear whether spaces were intended. For ex-
ample, “drop stack process” was spoken for
dropStackProcess. The inability to easily
specify where the spaces ought to go between
words and the abundance of multi-word identifiers
means that any contiguous sequence of words or
numbers may constitute a valid identifier.

These ambiguities combine to cause an explosion of
possible interpretations of the input stream. Those am-
biguities must be resolved prior to compilation. Unlike a
human listener who can understand the intent of speech
that contains mistakes, a program compiler cannot com-
pile code containing any mistakes – the slightest error,
for example, a misplaced character or misspelled name,
can render the entire program invalid.

2.2. Written Code Can Be Hard To Say

There were many stop words, false starts, restated ex-
pressions and statements, and stream of consciousness
utterances sprinkled throughout the spoken code. These
speech patterns were particularly common from partici-
pants less familiar with Java.

We found that native English speakers had no trou-
ble verbalizing partial words (which were made up of
pronounceable syllables) (e.g. tur and pat) or verbal-
izing abbreviated words (e.g. println). Non-native
English speakers often spelled out these partial or ab-
breviated words.

2.3. One Utterance Represents Many Structures

Much written punctuation was omitted when spo-
ken, for example the dot in a qualified name
object.stack, the parentheses indicating a method
call e.printStackTrace(), the comma separating
arguments to a method call, or the semicolon at the end
of a statement.

Sometimes punctuation was verbalized in context-
specific ways. For example, to declare the constructor
Pool(Class kind), one person said “constructor
pool takes arguments of class kind” (other participants
used similar phrasings). “No arguments” was used as a
synonym for two matching parentheses with nothing in
between, as part of a method declaration or call. “End
function,” “that finishes the method,” “close class,” and
“end for,” were context-specific synonyms for a right
curly brace.

Some punctuation was inconsistently verbalized
across programmers, and even from the same pro-



grammer for different lines of code. For example
System.out.println() was verbalized on one
line as “System dot out dot print line,” and on the next
line as “System out print line” (omitting the dots).

Usually, only one element of a pair of matching
punctuation symbols was verbalized. For example
array[i] was expressed as “array sub i.” Here “sub
stands in for the left bracket, but the end of the subscript
is not verbalized. Ending a while loop was verbalized
as “close while,” but no words indicated the open brace
at the beginning of the while loop body. Single-line
comments were demarcated at the beginning by “begin
comment,” but not demarcated at the end (where a car-
riage return would indicate the end). Multi-line com-
ments, however, were always demarcated at both ends.
In many instances, the close brace ending a block would
be conflated with the beginning of the next construct; the
speaker might say “and then we have a new method,” or
“next method.”

Punctuation is used by written programming lan-
guages to precisely demarcate program structures. Re-
moving or mangling the punctuation makes the struc-
ture of the code ambiguous (e.g. “foo bar” could be
foo.bar, foo(bar), or foo().bar() to name a
few possibilities). These ambiguities can combine to
make a spoken program difficult to understand.

2.4. Abstraction is Natural

When programmers discuss code with one another,
they talk in terms of constructs such as methods, if-
statements, or classes and semantic properties such as
scope or type, rather than in terms of textual entities.
Sometimes they speak program code as it is written, and
sometimes they talk about code (called meta-coding).
The instructions in our study were explicitly chosen to
instruct the programmers to speak the program code it-
self, rather than to describe what it should look like.
However, some programmers spoke more than just the
literal code; they paraphrased patterns they saw. For in-
stance, they said “All these are just assignment initializa-
tions of null. array dot p a t, array dot t u r, array dot o b
s...,” or alternatively, “set all the fields of array to null.”
Some speech was meta-code: “The first member of the
class is...” “And then there’s a forward declaration of the
class kind.” After describing a few fields, one program-
mer stated “these are all members.” When describing
the beginning of a pattern of code, a programmer said,
“Let’s initialize a bunch of array’s members.”

We see that abstraction is natural: Speakers identify
and describe patterns, rather than their instantiations.

When humans communicate with one another, they ex-
plain concepts at high-level first, and only drop down
to a more detailed level if the first explanation is not
understood. When programmers paraphrased the code,
they abstracted low-level details into a shorter descrip-
tion of how they wanted the code to appear. By sup-
porting this more concise form of input, we would be
able to achieve immediate improvements in productivity
– for each phrase spoken by a programmer, many lines
of code could be written. In addition, before and after
a perceived pattern, programmers described what they
were about to do, or what they had just done. This kind
of speech act indicates the programmer’s immediate in-
tention. It can be exploited by humans to contextualize
the utterance and predict its content. A programming
system could use these as predictors for code utterances
and instantiate code templates for the programmer. Our
work does not yet take full advantage of this possibility.

2.5. Prosody Disambiguates

Vocal expression is as important as it is in natural
language: Speakers use prosody (volume, timbre, pitch,
and pauses) and vernacular to convey meaning. Prosody
was used to distinguish between similar-sounding pro-
gram constructs, for example, “array sub i plus plus”
could mean array[i]++ or array[i++]. Note that
the left bracket is verbalized, but the right bracket is not.

Native English speakers had different speech patterns
than some non-native English speakers. Native English
speakers used prosody to indicate a left or right punctua-
tion symbol when it was not otherwise verbalized. They
verbalized the first construct in the previous paragraph
as “array sub i <pause> plus plus” and the second as
“array sub <pause> i plus plus”. The pause indicates
that the terms before the pause are not to be grouped
with the terms after the pause. Some non-native English
speakers do not have the same familiarity with English
prosody. When such a speaker encountered the array
dereference ambiguity, he or she completely rephrased
the first form as “increment the ith value of the array.”
Prosody has limited power in this case – it takes the
place of either the left or right punctuation mark in a
pair (brackets, parentheses, or braces), but cannot rep-
resent two or more punctuation marks (which would be
required were there three or more groups of words to be
distinguished).

The semantic use of prosody is limited mostly to na-
tive English speakers; many non-native English speak-
ers who speak English typically use the prosody of their
native language, in which pauses, in particular, do not



for int i equals zero
for(int i = 0; i < 10; i++) { i less than ten

x = Math.cos(x); i plus plus
} x gets math dot cosine x

end for loop

(a) (b)

Figure 1. Part (a) shows Java code for a for loop. In (b) we show the same for loop using Spoken
Java.

public class Shopper { public class shopper
List inventory; list inventory
public void shop(Thing toBuy) { public void shop

inventory.add(toBuy); takes argument thing to buy
System.out.println(toBuy.toString()); inventory dot add to buy

} system out print line
} to buy dot to string

end class

(a) (b)

Figure 2. Part (a) shows Java code for a Shopper class with a shop method. In (b) we show the
same Shopper class and method using Spoken Java.

hold the same meaning. In our experiment, we inter-
viewed Indian and Chinese graduate students who were
non-native speakers, and none of them used the same
prosody as the native English speakers. It would be in-
teresting to see whether there are speakers of other lan-
guages who are able to employ pausing in a way that
could be used for programming.

3. Spoken Java

Our goal in conducting this study was to understand
how to design naturally verbalizable alternatives to spo-
ken programming languages. The lessons we learned
helped us create Spoken Java, a dialect of Java that has
been modified to more closely match what developers
say when they speak code out loud. Spoken Java is de-
signed to be semantically equivalent to Java – despite the
different input form, the result should be indistinguish-
able from a conventionally coded Java program.

Several features of Spoken Java were added to ad-
dress the concerns brought up during the study. Most
punctuation is optional, and all punctuation has verbal-
izable equivalents. Each punctuation mark may have
several different verbalizations, both context-insensitive
(e.g. “open brace”) and context-sensitive (e.g. “end for
loop”). We have reversed the phrase structure for the

cast operator to better fit with English (e.g. “cast foo to
integer”) and provided alternate more natural language-
like verbalizations for assignment (e.g. “set foo to 6”)
and incrementing or decrementing a value (e.g. “incre-
ment the ith element of a” in place of “a sub i plus plus”).

Figure 1 shows an example of how a Java program
might be entered in Spoken Java (carriage returns in
Spoken Java are written only for clarity). Note the
lack of punctuation, the verbalization of operators (“less
than” and “equals”), an alternate phrasing for assign-
ment, the verbalization of the “cos” abbreviation, and
the assumption of correct spelling for “x” and “i”.

Figure 2 illustrates more program structure. Note
the lack of capitalization, separation of words “to” and
“buy,” (and “print” and “line”), the assumed correct
spelling for every word (which can not be assumed as
the user speaks the code), the expansion of the abbre-
viation “ln” to “line,” the optional punctuation charac-
ter “dot,” and the overall lack of braces and parenthe-
ses. Also take notice of the lack of a right parenthesis
or suitable synonym after “thing to buy” in the method
declaration parameter list.

In these figures, the program fragments appear out of
context. When Spoken Java is used in a programming
environment, the programmer has visual feedback to in-
dicate how Spoken Java is being translated to Java.



for loop ... after left paren ...
declare india of type integer ...

for(int i = 0; i < 10; i++) { assign zero ... after semi ...
... recall one ... less than ten ...

} after semi ...
recall one ... increment ...
after left brace

(a) (b)

Figure 3. To get the for loop in (a), a VoiceCode user speaks the commands found in (b).

4. Spoken Programming Analyses

Our programming by voice system [2] consists of a
programming language editor called SPEED (for Speech
Editor), and an associated program analysis framework
called Harmonia [4], which are both embedded in the
Eclipse development environment [6]. A user begins by
speaking Spoken Java code into the editor via a commer-
cial speech recognizer. Once the words have been trans-
lated to text, they are analyzed by Harmonia. Harmo-
nia’s lexical analysis can recognize and handle homo-
phones, miscapitalized words, and arbitrarily concate-
nated words. These potentially ambiguous lexemes are
passed to the parser, which can handle ambiguous struc-
tures caused by missing or optional punctuation in the
input stream. The many resulting structural interpreta-
tions of the input are passed to the semantic analysis en-
gine, which uses the program context to disambiguate
them and choose the legal interpretations. Once one or
more interpretations have been deduced, they are trans-
lated from Spoken Java into Java, and written into the
editor. The user can either choose among interpretations
or wait until they are resolved by other changes.

Spoken Java is defined by a lexical and syntac-
tic specification language in the XGLR parsing frame-
work [3]. Motivated by the language used by the pro-
grammers in the study, the lexical specification supports
multiple verbalizations by allowing many regular ex-
pressions to match the same token. The grammar is sim-
ilar to a GLR [20] grammar for Java, but contains eleven
additional productions to support three features: a) lack
of braces around the class and interface bodies, b) dif-
ferent verbalizations for empty argument lists than for
lists of at least one argument, and c) an alternate phras-
ing for assignment. Each of these additional productions
naturally maps to a structure in the Java grammar.

Semantic analysis is written in a variant of C++ and,
for the most part, reuses the semantic analysis written
for the standard Java programming language. Ambigu-
ities arising from homophones and missing punctuation

are resolved in a semantic analysis engine that extends
the Visibility Graph [9], a graph-based data structure de-
signed to resolve names, bindings and scopes. The ex-
tensions support incremental update (for use in an inter-
active programming environment) and ambiguity reso-
lution. Two translation modules can translate code back
and forth between Java and Spoken Java, provided that
the ambiguities are resolved first. If there are multiple
interpretations, each is translated separately.

5. Related Work

Commercial speech recognition tools are poorly
suited for programming tasks because they are based on
statistical models of the English language; when they
receive code as input, they turn it into the closest ap-
proximation to English that they can. While some dis-
abled programmers have successfully adapted the com-
mand grammars that drive speech recognition for pro-
gramming, the resulting programming tools accept only
a prescriptive form of input and provide limited flexi-
bility for ways of programming not anticipated by the
tools’ authors. Merely speech-enabling text editors, as
has been done by IBM, Scansoft and by contributors to
public domain software [15, 17] is not enough to sup-
port software development tasks. To perform these ac-
tivities by voice, developers need to speak fragments of
program text interspersed with navigation, editing, and
transformation commands.

Recent efforts to adapt voice recognition tools for
code dictation have seen limited success. Command
mode solutions, such as VoiceCode [5, 21], suffer from
awkward, over-stylized code entry, and an inability to
exploit program structure and semantics. An example
using VoiceCode to enter a for loop is shown in Figure 3.
The commands are interpreted as follows.

1. for loop: Inserts a for loop code template with slots
for the initializer, predicate and incrementer.



2. after left paren/semi/left brace: Command to
move to the next slot in the code template. Analo-
gous commands exist to move to the previous slot.
Once all slots have been filled in, future navigation
is based on character distance and regular expres-
sion searches.

3. declare india: Creates a new variable named “i.”
Most speech recognizers require the speaker to use
the military alphabet when spelling words.

4. of type integer: A command modifier to “declare”,
that adds the type signature to a declaration.

5. assign zero: Assignment in VoiceCode is “assign,”
not “equals.”

6. recall one: Identifiers in VoiceCode can be stored
in a cache pad, a table of slots each of which is
addressable by a number from one to ten. To ref-
erence a previously verbalized identifier, the user
says “recall” and the number of the slot.

7. increment: VoiceCode’s way to say “plus plus.”

More recent work has shown that keyword-triggered
code template expansion and context-sensitive detection
for when the user is saying an identifier can ease some
of this awkwardness [19].

Taking a different approach, the NaturalJava sys-
tem [13, 14] uses a specially developed natural language
input component and information extraction techniques
to recognize Java constructs and commands. This is a
form of meta-coding, where the user describes the pro-
gram he or she wishes to write instead of saying the code
directly. Parts of that work are promising, although at
present there are restrictions on the form of the input
and the decision tree/case frame mechanism used to de-
termine system actions is somewhat ad hoc. Worse, the
tool is not interactive, but rather a batch processor that
produces code only after the programmer has described
the entire section of code.

Arnold, Mark, and Goldthwaite [1] proposed to
build a programming-by-voice system based on simple
syntax-directed editing, but their approach is limited and
it is no longer being pursued.

An important part of programming is entering math-
ematical expressions. Fateman has developed tech-
niques for entering complex mathematical expressions
by voice [7] that can be used in our speech editor.

Voice synthesis has been appled to speaking pro-
grams. Francioni and Smith [8, 18] developed a tool
for speaking Java code out loud for blind programmers.

Punctuation is verbalized in English, and structure be-
ginnings and ends are explicitly noted (with associated
class and method names when applicable). Modulation
of speech prosody is used to indicate spacing, comments
and special tokens or structures. The design of Spoken
Java incorporates several of the design features from this
auralization of Java.

6. Future Work

This study looked at programmers speaking pre-
written code that they read off a piece of paper. There
was no visual or auditory feedback of their progress
through the program, nor any way to verify the correct-
ness of the program they spoke. In addition, the pro-
gram was spoken linearly from top to bottom, which is
different from the way most programmers create new
code. Some software developers plan the interface to
their code before they write the implementation; some
write one function and test it before writing the next.
Each of these styles would require a speech system to
accept partial code or code out of context; supporting the
analysis of spoken incomplete or incorrect programs is
vital to a usable solution. Our current prototype does not
do that. While we feel that we have identified the spoken
language used by the study participants for code author-
ing, our understanding of what kinds of errors they make
will require further study.

Many coding situations do not involve simple code
dictation by sight, but code composition on the fly. We
plan to do another study to look at how programmers
speak code spontaneously when asked to write a solution
to a coding exercise. We will ask programmers to build
a data structure and associated algorithms, and then have
them modify the data structure and update the rest of the
program. Not only will this show us whether the lan-
guage used in spontaneous speech is similar to that used
to speak the pre-written code, it will also help show the
kinds of commands the programmers use to manipulate
the code and the editor, as well as illustrate the kinds of
ambiguities that result from non-linear code entry.

Repetitive strain injuries from keyboard and mouse
use are a motivator for this work, but speech interfaces
are not problem-free. Voice strain is a very real problem
that heavy users of speech recognition often encounter
while they adjust to using a speech environment. Tech-
niques have been developed to help avoid voice strain
such as maintaining proper hydration, speaking in a soft
voice (while turning up the gain on the microphone), and
taking frequent breaks. These techniques are as impor-
tant to the voice programming training period as learn-



ing to use the analysis system.

7. Conclusion

Programming by voice systems can be a viable alter-
native to keyboard-based programming environments,
especially for those suffering from repetitive strain in-
juries. By first learning how programmers naturally ver-
balize code and then developing a formal spoken code
analysis system based on the lessons we learned, we
are taking one of the first human-centric approaches to
achieving the goals of this field. Our study has revealed
valuable information about the kinds of ambiguities that
emerge from spoken programming (which do not ap-
pear when using a keyboard), about the use of voice
expression and prosody for disambiguation, about the
differences between native English and non-native En-
glish speakers, and about the human tendency toward
abstraction over verbalization of details. Based on these
lessons, we have designed a new dialect of Java, called
Spoken Java, which is easier to speak out loud. We
have used programming language tools to formally de-
scribe Spoken Java, and have enhanced these tools to
support the kinds of ambiguities that arise from spo-
ken programs. Finally, we are embedding our analyses
into SPEED, a speech-based program editor that can use
these program analyses to disambiguate what the pro-
grammer said and truly enable programming by voice.

Acknowledgments

We thank Michael Toomim for his valuable feedback
on drafts of this paper. Our research has been supported
in part by NSF Grant CCR-0098314 and by an IBM
Eclipse Innovation Grant.

References

[1] S. C. Arnold, L. Mark, and J. Goldthwaite. Programming
by Voice, VocalProgramming. In ASSETS, pages 149–
155. ACM, 2000.

[2] A. Begel. Programming by voice: A domain-specific ap-
plication of speech recognition. In AVIOS Speech Tech-
nology Symposium – SpeechTek West, February 2005.

[3] A. Begel and S. L. Graham. Language analysis and tools
for ambiguous input streams. In Fourth Workshop on
Language Descriptions, Tools and Applications, 2004.

[4] M. Boshernitsan. Harmonia: A flexible framework
for constructing interactive language-based program-
ming tools. Technical Report UCB/CSD-01-1149, Com-
puter Science Division – EECS, University of California,
Berkeley, 2001. M.S. Report.

[5] A. Desilets. Voicegrip: A tool for programming by
voice. International Journal of Speech Technology,
4(2):103–116, June 2001.

[6] Eclipse. http://www.eclipse.org.
[7] R. Fateman. How can we speak

math? http://www.cs.berkeley.edu/ fate-
man/papers/speakmath.pdf, June 2004.

[8] J. Francioni and A. Smith. Computer science accessibil-
ity for students with visual disabilities. In J. Impagli-
azzo, editor, Proceedings of the Thirty-third SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE-02), volume 34, 1 of SIGCSE Bulletin, pages
91–95, New York, Feb. 27– Mar. 3 2002. ACM Press.

[9] P. Garrison. Modeling and implementation of visibility
in programming languages. PhD thesis, University of
California, Berkeley, 1987.

[10] H. Liu and H. Lieberman. Metafor: visualizing stories
as code. In IUI ’05: Proceedings of the 10th interna-
tional conference on Intelligent user interfaces, pages
305–307, New York, NY, USA, 2005. ACM Press.

[11] C. V. Lopes, P. Dourish, D. H. Lorenz, and K. Lieber-
herr. Beyond aop: toward naturalistic programming.
SIGPLAN Not., 38(12):34–43, 2003.

[12] B. A. Myers, J. F. Pane, and A. Ko. Natural program-
ming languages and environments. Commun. ACM,
47(9):47–52, 2004.

[13] D. Price et al. NaturalJava: A natural language interface
for programming in Java. In Proceedings of IUI, Short
Paper/Poster/Demonstration, pages 207–211, 2000.

[14] D. Price et. al. Off to see the wizard: Using a ”wizard of
oz” study to learn how to design a spoken language inter-
face for programming. In Proceedings of the Frontiers
in Education Conference, November 2002.

[15] T. V. Raman. Emacspeak – direct speech access. In
ASSETS, pages 32–36, 1996.

[16] J. Sachs. Recognition memory for syntactic and seman-
tic aspects of connected discourse. Perception and Psy-
chophysics, 2, 1967.

[17] S. Shaik, R. Corvin, R. Sudarsan, F. Javed, Q. Ijaz,
S. Roychoudhury, J. Gray, and B. R. Bryant. Speech-
clipse: an eclipse speech plug-in. In OOPSLA Workshop
on Eclipse Technology eXchange, pages 84–88, 2003.

[18] A. C. Smith, J. M. Francioni, and S. D. Matzek. A java
programming tool for students with visual disabilities. In
Fourth Annual ACM Conference on Assistive Technolo-
gies, pages 142–148. ACM, 2000.

[19] L. Snell. An investigation into programming by voice
and development of a toolkit for writing voice-controlled
applications. M.eng. report, Imperial College of Science,
Technology and Medicine, London, June 2000.

[20] M. Tomita. Efficient Parsing for Natural Language —
A Fast Algorithm for Practical Systems. Int. Series in
Engineering and Computer Science. Kluwer, Hingham,
MA, 1986.

[21] Voice Coders. VoiceCode: Program By Voice Toolkit.
http://www.codevox.com/pbvkit.


